mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:18:01 +00:00
9e4b34f579
* Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
2 MiB
2 MiB
$P(k, H_0)$¶
Quick notebook to see how the power spectrum depends on $H_0$.
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import camb
from camb import model
%matplotlib inline
In [19]:
def get_pk(h):
pars = camb.CAMBparams()
pars.set_cosmology(H0=h*100, ombh2=0.04825 * h**2, omch2=(0.307 - 0.04825) * h**2)
pars.InitPower.set_params(ns=0.9611)
pars.set_matter_power(redshifts=[0.], kmax=40)
#Non-Linear spectra (Halofit)
pars.NonLinear = model.NonLinear_both
results = camb.get_results(pars)
results.calc_power_spectra(pars)
kh_nonlin, z_nonlin, pk_nonlin = results.get_matter_power_spectrum(minkh=1e-3, maxkh=50, npoints = 200)
return kh_nonlin, pk_nonlin[0]
kh_nonlin, pk_nonlin_reference = get_pk(0.705)
In [25]:
plt.figure()
for h in [0.65, 0.70, 0.75]:
__, pk = get_pk(h)
plt.plot(kh_nonlnie, pk / pk_nonlin_reference, label=r"$h = {}$".format(h))
plt.legend()
plt.xscale("log")
plt.xlabel(r"$k ~ [h / \mathrm{Mpc}]$")
plt.ylabel(r"$P(k, h) / P(k, h=0.705)$")
plt.tight_layout()
plt.savefig("../plots/pk_h0_dependence.png", dpi=450)
plt.show()
In [ ]: