mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:58:01 +00:00
ee222cd010
* Update nb * Update script * Update script * Rename * Update script * Update script * Remove warning * Ignore minors when extracting MAH * Fix paths bug * Move notebooks * Move files * Rename and delete things * Rename file * Move file * Rename things * Remove old print statement * Add basic MAH plot * Add random MAH path * Output snapshot numbers * Add MAH random extraction * Fix redshift bug * Edit script * Add extracting random MAH * Little updates * Add CB2 redshift * Add some caching * Add diagnostic plots * Add caching * Minor updates * Update nb * Update notebook * Update script * Add Sorce randoms * Add CB2 varysmall * Update nb * Update nb * Update nb * Use catalogue HMF * Move definition of radec2galactic * Update nb * Update import * Update import * Add galatic coords to catalogues * Update nb
198 KiB
198 KiB
Density & velocity fields alond a LOS¶
In [128]:
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
import numpy as np
import matplotlib.pyplot as plt
import jax
from jax import numpy as jnp
from numpyro.infer import MCMC, NUTS, init_to_median
import csiborgtools
%load_ext autoreload
%autoreload 2
%matplotlib inline
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
LOS density & radial velocity plots¶
In [129]:
fpath = "/mnt/extraspace/rstiskalek/catalogs/PV_compilation.hdf5"
loader_carrick = csiborgtools.flow.DataLoader("Carrick2015", [0], "Pantheon+", fpath, paths, ksmooth=0, )
# loaders_csiborg2X = [csiborgtools.flow.DataLoader("csiborg2X", i, "LOSS", fpath, paths, ksmooth=1, verbose=False) for i in range(20)]
# loaders_csiborg2 = [csiborgtools.flow.DataLoader("csiborg2_main", i, "LOSS", fpath, paths, ksmooth=1, verbose=False) for i in range(20)]
# loader_CF4 = csiborgtools.flow.DataLoader("CF4gp", [0], "LOSS", fpath, paths, ksmooth=0, )
# loader_lilow = csiborgtools.flow.DataLoader("Lilow2024", [0], "LOSS", fpath, paths, ksmooth=0, )
In [130]:
# ks = [i for i in range(50)]
# ks = [30, 50,]
ks = np.random.choice(50, 2, replace=False)
for k in ks:
fig, axs = plt.subplots(2, 1, figsize=(7, 7), sharex=True)
fig.subplots_adjust(wspace=0)
cols = plt.rcParams['axes.prop_cycle'].by_key()['color']
# # CSiBORG2
# x = loaders_csiborg2X[0].rdist
# y = np.asarray([loaders_csiborg2[i].los_density[k, :] for i in range(len(loaders_csiborg2X))])
# ylow, ymed, yhigh = np.percentile(y, [16, 50, 84], axis=0)
# axs[0].fill_between(x, ylow, yhigh, color=cols[0], alpha=0.25)
# axs[0].plot(x, ymed, color=cols[0], label="CSiBORG2")
# y = np.asarray([loaders_csiborg2[i].los_radial_velocity[k, :] for i in range(len(loaders_csiborg2X))])
# ylow, ymed, yhigh = np.percentile(y, [16, 50, 84], axis=0)
# axs[1].fill_between(x, ylow, yhigh, color=cols[0], alpha=0.25)
# axs[1].plot(x, ymed, color=cols[0], label="CSiBORG2")
# # CSiBORG2X
# x = loaders_csiborg2X[0].rdist
# y = np.asarray([loaders_csiborg2X[i].los_density[k, :] for i in range(len(loaders_csiborg2X))])
# ylow, ymed, yhigh = np.percentile(y, [16, 50, 84], axis=0)
# axs[0].fill_between(x, ylow, yhigh, color=cols[1], alpha=0.25)
# axs[0].plot(x, ymed, color=cols[1], label="CSiBORG2X")
# y = np.asarray([loaders_csiborg2X[i].los_radial_velocity[k, :] for i in range(len(loaders_csiborg2X))])
# ylow, ymed, yhigh = np.percentile(y, [16, 50, 84], axis=0)
# axs[1].fill_between(x, ylow, yhigh, color=cols[1], alpha=0.25)
# axs[1].plot(x, ymed, color=cols[1], label="CSiBORG2X")
# Plot Carrick+2015
axs[0].plot(loader_carrick.rdist, loader_carrick.los_density[0, k, :], color="red", label="Carrick+2015")
axs[1].plot(loader_carrick.rdist, loader_carrick.los_radial_velocity[0, k, :] * 0.43, color="red")
axs[1].axvline(loader_carrick._rmax[0, k], c="black", linestyle="--")
# # Plot CF4
# c = cols[4]
# axs[0].plot(loader_CF4.rdist, loader_CF4.los_density[0, k, :], color=c, label="CF4")
# axs[1].plot(loader_CF4.rdist, loader_CF4.los_radial_velocity[0, k, :], color=c)
# # Plot Lilow2024
# c = cols[5]
# axs[0].plot(loader_lilow.rdist, loader_lilow.los_density[0, k, :], color=c, label="Lilow+2024")
# axs[1].plot(loader_lilow.rdist, loader_lilow.los_radial_velocity[0, k, :], color=c)
axs[1].axhline(0, color="black", linestyle="--")
axs[1].set_xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
axs[0].set_ylabel(r"$\rho_{\rm LOS} / \langle \rho_{\rm matter} \rangle$")
axs[1].set_ylabel(r"$v_{\rm LOS} ~ [\mathrm{km/s}]$")
axs[0].set_yscale("log")
axs[0].legend(loc="upper right")
# axs[0].set_xlim(0, 200)
fig.tight_layout(w_pad=0, h_pad=0)
fig.savefig(f"../../plots/LOSS_los_{k}.png", dpi=500, bbox_inches="tight")
fig.show()
Test running a model¶
In [84]:
fpath_data = "/mnt/extraspace/rstiskalek/catalogs/PV_compilation.hdf5"
simname = "Carrick2015"
catalogue = "LOSS"
loader = csiborgtools.flow.DataLoader(simname, [0, 0], catalogue, fpath_data, paths, ksmooth=0, )
SN_hyperparams = {"e_mu_mean": 0.1, "e_mu_std": 0.05,
"mag_cal_mean": -18.25, "mag_cal_std": 0.5,
"alpha_cal_mean": 0.148, "alpha_cal_std": 0.05,
"beta_cal_mean": 3.112, "beta_cal_std": 1.0,
}
calibration_hyperparams = {"Vext_std": 250,
"alpha_mean": 1.0, "alpha_std": 0.5,
"beta_mean": 1.0, "beta_std": 0.5,
"sigma_v_mean": 150., "sigma_v_std": 100.,
"sample_alpha": True, "sample_beta": True,
}
get_model_kwargs = {"zcmb_max": 0.05}
Running HMC¶
In [85]:
model = csiborgtools.flow.get_model(loader, **get_model_kwargs)
model_kwargs = {"distmod_hyperparams": SN_hyperparams, "calibration_hyperparams": calibration_hyperparams,}
In [86]:
kernel = NUTS(model, init_strategy=init_to_median(num_samples=100))
mcmc = MCMC(kernel, num_warmup=500, num_samples=500)
rng_key = jax.random.PRNGKey(5)
mcmc.run(rng_key, extra_fields=("potential_energy",), **model_kwargs)
mcmc.print_summary()
samples = mcmc.get_samples()
In [ ]: