mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-07 17:24:15 +00:00
779f2e76ac
* Update redshift reading * Add helio to CMB redshift * Update imports * Update nb * Run for Quijote * Add script * Update * Update .gitignore * Update imports * Add Peery estimator * Add bulk flow scripts * Update typs * Add comment * Add blank space * Update submission script * Update description * Add barriers * Update nb * Update nb * Rename script * Move to old * Update imports * Add nb * Update script * Fix catalogue key * Update script * Update submit * Update comment * Update .gitignore * Update nb * Update for stationary obsrevers * Update submission * Add nb * Add better verbose control * Update nb * Update submit * Update nb * Add SN errors * Add draft of the script * Update verbosity flags * Add submission script * Debug script * Quickfix * Remove comment * Update nb * Update submission * Update nb * Processed UPGLADE
41 KiB
41 KiB
Process PV catalogues¶
In [2]:
from os.path import join
import numpy as np
import matplotlib.pyplot as plt
from h5py import File
from astropy.coordinates import match_coordinates_sky, SkyCoord
from astropy import units as u
%matplotlib inline
%load_ext autoreload
%autoreload 2
SPEED_OF_LIGHT = 299_792.458
In [3]:
a2dir = "/mnt/extraspace/rstiskalek/catalogs/PV/PV_Supranta/A2"
names = ["z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c", "RA", "DEC"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(a2dir, "loss.csv"), delimiter=",", skip_header=1,
usecols=[5 + n for n in range(len(names))])
loss_data = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
loss_data[n] = data[:, i]
Foundation¶
In [4]:
names = ["z_CMB", "RA", "DEC", "x1", "mB", "c", "peak", "e_peak", "e_x1", "e_mB", "e_c"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(a2dir, "foundation.csv"), delimiter=",", skip_header=1,
usecols=[3 + n for n in range(len(names))])
foundation_data = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
foundation_data[n] = data[:, i]
Pantheon+, all¶
In [5]:
fpath_full = "/mnt/extraspace/rstiskalek/catalogs/PV/Pantheon+SH0ES.dat"
fpath_group = "/mnt/extraspace/rstiskalek/catalogs/PV/pantheon+_groups.hdf5"
data_full = np.genfromtxt(fpath_full, names=True, dtype=None, encoding=None)
data_group = {}
# Read in the groups
with File(fpath_group, "r") as f:
print(f.keys())
for key in f.keys():
try:
data_group[key] = f[key][...]
except IndexError:
print(f"Failed to read {key}")
# data[key] = f[key][...]
# data = data[data["zCMB"] < 0.1]
keys = ["zCMB", "zCMBERR", "mB", "mBERR", "x1", "x1ERR", "c", "cERR", "RA",
"DEC", "VPEC", "VPECERR", "biasCor_m_b", "biasCorErr_m_b"]
pantheon_data = {}
for key in keys:
pantheon_data[key] = data_full[key]
In [25]:
match_coord = SkyCoord(data_full["RA"], data_full["DEC"], unit="deg")
catalogue_coord = SkyCoord(data_group["RAJ2000"], data_group["DEJ2000"],
unit="deg")
idxs, sep2d, sep3d = match_coordinates_sky(match_coord, catalogue_coord, nthneighbor=1)
print(f"Maximum 2D separation is: {sep2d.max()}")
In [26]:
zcmb_supernovae = data_group["zcmb"][idxs]
zcmb_group = data_group["zGcmb"][idxs]
pantheon_data["zCMB_SN"] = zcmb_supernovae
pantheon_data["zCMB_Group"] = zcmb_group
mask = pantheon_data["zCMB"] < 0.1
for key in pantheon_data.keys():
pantheon_data[key] = pantheon_data[key][mask]
In [27]:
plt.figure()
plt.scatter(pantheon_data["zCMB_SN"], pantheon_data["zCMB_Group"], s=1)
plt.show()
Tully-Fisher galaxies¶
SFI++ galaxies¶
In [28]:
tf_folder = "/mnt/extraspace/rstiskalek/catalogs/PV/PV_Supranta/tf"
names = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(tf_folder, "sfi_gals_tf.csv"), delimiter=",", skip_header=1,
usecols=[2 + n for n in range(len(names))])
sfi_gals = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
sfi_gals[n] = data[:, i]
SFI++ galaxies masked¶
In [29]:
names = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(tf_folder, "sfi_gals_tf_masked.csv"), delimiter=",", skip_header=1,
usecols=[2 + n for n in range(len(names))])
sfi_gals_masked = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
sfi_gals_masked[n] = data[:, i]
SFI++ groups¶
In [30]:
names = ["RA", "DEC", "z_CMB", "r_hMpc", "e_r_hMpc"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(tf_folder, "sfi_grps.csv"), delimiter=",", skip_header=1,
usecols=[1 + n for n in range(len(names))])
sfi_groups = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
sfi_groups[n] = data[:, i]
Cross $\texttt{SFI++ galaxies}$ and $\texttt{SFI++ groups}$¶
In [31]:
match_coord = SkyCoord(sfi_gals["RA"], sfi_gals["DEC"], unit="deg")
catalogue_coord = SkyCoord(sfi_groups["RA"], sfi_groups["DEC"],
unit="deg")
idxs, sep2d, sep3d = match_coordinates_sky(match_coord, catalogue_coord, nthneighbor=1)
sep2d.to(u.degree)
Out[31]:
In [32]:
m = sep2d.value < 0.5
plt.figure()
plt.hist(sep2d, bins="auto")
plt.xlabel("Separation [deg]")
plt.ylabel("Counts")
plt.tight_layout()
plt.savefig("../../plots/sfi_gals_to_sfi_groups.png", bbox_inches="tight",
dpi=450)
plt.show()
2MTF¶
In [33]:
names = ["RA", "DEC", "mag", "e_mag", "z_CMB", "r_hMpc", "e_rhMpc", "M", "eta", "e_eta"]
dtype = [(n, np.float32) for n in names]
data = np.genfromtxt(join(tf_folder, "twomtf_k.csv"), delimiter=",", skip_header=1,
usecols=[2 + n for n in range(len(names))])
twomtf_gals = np.empty(len(data), dtype=dtype)
for i, n in enumerate(names):
twomtf_gals[n] = data[:, i]
Write to HDF5¶
In [34]:
outdir = "/mnt/extraspace/rstiskalek/catalogs"
fname = "PV_compilation.hdf5"
with File(join(outdir, fname), 'w') as f:
# Write LOSS
grp = f.create_group("LOSS")
for name in loss_data.dtype.names:
grp.create_dataset(name, data=loss_data[name])
# Write Foundation
grp = f.create_group("Foundation")
for name in foundation_data.dtype.names:
grp.create_dataset(name, data=foundation_data[name])
# Write SFI gals
grp = f.create_group("SFI_gals")
for name in sfi_gals.dtype.names:
grp.create_dataset(name, data=sfi_gals[name])
# Write SFI gals masked
grp = f.create_group("SFI_gals_masked")
for name in sfi_gals_masked.dtype.names:
grp.create_dataset(name, data=sfi_gals_masked[name])
# Write SFI groups
grp = f.create_group("SFI_groups")
for name in sfi_groups.dtype.names:
grp.create_dataset(name, data=sfi_groups[name])
# Write 2MTF gals
grp = f.create_group("2MTF")
for name in twomtf_gals.dtype.names:
grp.create_dataset(name, data=twomtf_gals[name])
# Write Pantheon
grp = f.create_group("Pantheon+")
for name in pantheon_data.keys():
grp.create_dataset(name, data=pantheon_data[name])
In [ ]: