mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:18:02 +00:00
8d49aa071b
* Switch to CB2 * Update for extrapolation * Add 'nan' extrapolation * Update nb * Update submits * Add Rmax to the models * Update nb * Add print statement * Update script settings * Update flow model to new method * Update printing * Update path * Update so that it works * Update nb * Update submit * Add Rmin for hollow bulk flows * Update script * Update script * Update scripts back * Update scripts back * Fix normalization bug * Update script * pep8
523 KiB
523 KiB
Lagrangian patch example¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import scienceplots
import csiborgtools
%matplotlib inline
%load_ext autoreload
%autoreload 2
In [2]:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
bounds = {"dist": (0, 155)}
nsim0 = 7444 + 24 * 61
nsnap_final = paths.get_snapshots(nsim0, "csiborg1")[-1]
snap0_initial = csiborgtools.read.CSiBORG1Snapshot(nsim0, nsnap=1)
cat0 = csiborgtools.read.CSiBORG1Catalogue(nsim0, paths, snapshot=snap0_initial, bounds=bounds)
nsimx = 9844
nsnap_final = paths.get_snapshots(nsimx, "csiborg1")[-1]
snapx_initial = csiborgtools.read.CSiBORG1Snapshot(nsimx, nsnap=1)
catx = csiborgtools.read.CSiBORG1Catalogue(nsimx, paths, snapshot=snapx_initial, bounds=bounds)
pair_overlapper = csiborgtools.summary.PairOverlap(cat0, catx, 13.25, )
In [3]:
k = np.argsort(cat0["totmass"])[::-1][1]
print(np.log10(cat0["totmass"][k]))
print(cat0["dist"][k])
hid0 = cat0["index"][k]
In [4]:
print("Overlaps are ", pair_overlapper.overlap(True)[k])
hidx = catx["index"][pair_overlapper["match_indxs"][k][0]]
In [5]:
overlapper = csiborgtools.match.ParticleOverlap(**{"box_size": 2048, "bckg_halfsize": 512})
pos0_initial = snap0_initial.halo_coordinates(hid0)
pos0_initial = csiborgtools.match.pos2cell(pos0_initial / cat0.boxsize, 2048)
mass0_initial = snap0_initial.halo_masses(hid0)
posx_initial = snapx_initial.halo_coordinates(hidx)
posx_initial = csiborgtools.match.pos2cell(posx_initial / catx.boxsize, 2048)
massx_initial = snapx_initial.halo_masses(hidx)
In [6]:
smooth_kwargs = {"sigma": 1, "mode": "constant", "cval": 0}
# smooth_kwargs = None
delta1_initial, delta2_initial, cellmins, __ = overlapper.make_deltas(
pos0_initial, posx_initial, mass0_initial, massx_initial, smooth_kwargs=smooth_kwargs, )
x0 = cellmins[0] / 2048 * 677.7
xf = (cellmins[0] + delta1_initial.shape[0]) / 2048 * 677.7
y0 = cellmins[1] / 2048 * 677.7
yf = (cellmins[1] + delta1_initial.shape[1]) / 2048 * 677.7
In [56]:
with plt.style.context("science"):
# plt.rcParams.update({'font.size': 9})
fig, axs = plt.subplots(1, 2, figsize=(8.3, 0.6* 8.3), sharey=True, sharex=True)
fig.subplots_adjust(wspace=0.05, hspace=0.05)
kwargs = {"origin": "lower", "cmap": "viridis", "vmin": 0,
"extent": [x0, xf, y0, yf]}
X1 = np.mean(delta1_initial, axis=-1)
X2 = np.mean(delta2_initial, axis=-1)
img1 = axs[0].imshow(X1, **kwargs)
img2 = axs[1].imshow(X2, **kwargs)
kwargs = {"extent": [x0, xf, y0, yf]}
# contour_level_X1 = np.percentile(X1, [1, 99]) # This will give the value at the 95th percentile
# # contour_level_X2 = np.percentile(X2, [1, 99]) # You can adjust this to enclose more/less area
contour_level_X1 = 1
contour_level_X2 = 1
axs[0].contour(X1, colors='darkorange', levels=contour_level_X1, **kwargs)
axs[0].contour(X2, colors='darkgreen', levels=contour_level_X2, **kwargs)
axs[1].contour(X1, colors='darkorange', levels=contour_level_X1, **kwargs)
axs[1].contour(X2, colors='darkgreen', levels=contour_level_X2, **kwargs)
for i in range(2):
axs[i].set_xlabel(r"$x ~ [\mathrm{cMpc} / h]$")
axs[0].set_ylabel(r"$y ~ [\mathrm{cMpc} / h]$")
axs[0].set_title(f"MCMC step {nsim0}", color="darkorange")
axs[1].set_title(f"MCMC step {nsimx}", color="darkgreen")
fig.tight_layout()
fig.savefig("../../plots/lagrangian_patch_example.pdf", bbox_inches="tight", dpi=450)
fig.show()
In [ ]: