csiborgtools/notebooks/flow_calibration.ipynb
Richard Stiskalek a65e3cb15b
Add simple distance flow model (#114)
* Add imports

* Add field LOS paths

* Add basic flow model

* Edit script

* Add nb

* Add nb

* Update nb

* Add some docs

* Add RA reading

* Add imoprts

* Updates to the flow model

* Update script

* Bring back A2

* Update imports

* Update imports

* Add Carrick to ICs

* Add Carrick boxsize

* Add Carrick and fix minor bugs

* Add Carrick box

* Update script

* Edit imports

* Add fixed flow!

* Update omega_m and add it

* Update nb

* Update nb

* Update nb

* Remove old print statements

* Update params

* Add thinning of chains

* Add import

* Add flow validation script

* Add submit script

* Add ksmooth

* Update nb

* Update params

* Update script

* Update string

* Move where distributions are defined

* Add density bias parameter

* Add lognorm mean

* Update scripts

* Update script
2024-03-08 10:44:19 +00:00

352 KiB

In [219]:
import numpy as np

import matplotlib.pyplot as plt
from h5py import File
%matplotlib inline

from jax import numpy as jnp
import jax

from numpyro.infer import MCMC, NUTS, util

import csiborgtools

%load_ext autoreload
%autoreload 2


paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

LOS density & radial velocity plots

In [4]:
fpath = "/mnt/extraspace/rstiskalek/catalogs/A2.h5"

loader_carrick = csiborgtools.flow.DataLoader("Carrick2015", "A2", fpath, paths, ksmooth=None)
loader_csiborg = csiborgtools.flow.DataLoader("csiborg1", "A2", fpath, paths, ksmooth=1)
14:31:30: reading the catalogue.
14:31:30: reading the interpolated field.
100%|██████████| 1/1 [00:00<00:00,  6.08it/s]
/mnt/users/rstiskalek/csiborgtools/csiborgtools/flow/flow_model.py:102: UserWarning: The number of radial steps is even. Skipping the first step at 0.0 because Simpson's rule requires an odd number of steps.
  warn(f"The number of radial steps is even. Skipping the first "
14:31:31: calculating the radial velocity.
100%|██████████| 452/452 [00:00<00:00, 23479.46it/s]
14:31:31: reading the catalogue.
14:31:31: reading the interpolated field.
100%|██████████| 101/101 [00:22<00:00,  4.53it/s]
14:31:53: calculating the radial velocity.
100%|██████████| 452/452 [00:02<00:00, 171.48it/s]
In [8]:
# ks = [115,  53,  77, 105,  26,  61,  86,  29,  80,  21]

k = 50
fig, axs = plt.subplots(2, 1, figsize=(7, 7), sharex=True)
# Get rid of vertical spacing
fig.subplots_adjust(wspace=0)

# Plot CSiBORG
for i in range(101):
    axs[0].plot(loader_csiborg.rdist, loader_csiborg.los_density[k, i, :], alpha=0.1, color="black")
    axs[1].plot(loader_csiborg.rdist, loader_csiborg.los_radial_velocity[k, i, :], alpha=0.1, color="black")

axs[0].plot(loader_csiborg.rdist, loader_csiborg.los_density[k, :, :].mean(axis=0), color="red", label="CSiBORG1")
axs[1].plot(loader_csiborg.rdist, loader_csiborg.los_radial_velocity[k, :, :].mean(axis=0), color="red")

# Plot Carrick+2015
axs[0].plot(loader_carrick.rdist, loader_carrick.los_density[k, 0, :], color="blue", label="Carrick+2015")
axs[1].plot(loader_carrick.rdist, loader_carrick.los_radial_velocity[k, 0, :], color="blue")


for i in range(2):
    label = "SN"
    rdist = loader_csiborg.cat["r_hMpc"][k]
    axs[i].axvline(rdist, color="violet", linestyle="--",
                zorder=0, label=label)

axs[1].set_xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
axs[0].set_ylabel(r"$\rho_{\rm LOS} / \langle \rho_{\rm matter} \rangle$")
axs[1].set_ylabel(r"$v_{\rm LOS} ~ [\mathrm{km/s}]$")

axs[0].set_yscale("log")

axs[0].legend(loc="upper right")
axs[0].set_xlim(0, 200)

fig.tight_layout(w_pad=0, h_pad=0)
# fig.savefig(f"../plots/example_los.png", dpi=500, bbox_inches="tight")

fig.show()
No description has been provided for this image

Test running a model

In [220]:
# fpath_data = "/mnt/extraspace/rstiskalek/catalogs/PV_compilation_Supranta2019.hdf5"
fpath_data = "/mnt/extraspace/rstiskalek/catalogs/A2.h5"
loader = csiborgtools.flow.DataLoader("Carrick2015", "A2", fpath_data, paths, ksmooth=0)
Omega_m = csiborgtools.simname2Omega_m("Carrick2015")
10:31:41: reading the catalogue.
10:31:41: reading the interpolated field.
100%|██████████| 1/1 [00:00<00:00,  6.57it/s]
/mnt/users/rstiskalek/csiborgtools/csiborgtools/flow/flow_model.py:102: UserWarning: The number of radial steps is even. Skipping the first step at 0.0 because Simpson's rule requires an odd number of steps.
  simname, catalogue, ksmooth, paths)
10:31:41: calculating the radial velocity.
100%|██████████| 452/452 [00:00<00:00, 24805.05it/s]
In [221]:
los_overdensity = loader.los_density[:, 0, :]
los_velocity = loader.los_radial_velocity[:, 0, :]

# # PV calibration
# RA = loader.cat["RA"]
# dec = loader.cat["DEC"]
# zCMB = loader.cat["z_CMB"]

# mB = loader.cat["mB"]
# x1 = loader.cat["x1"]
# c = loader.cat["c"]

# e_mB = loader.cat["e_mB"]
# e_x1 = loader.cat["e_x1"]
# e_c = loader.cat["e_c"]

# PV no calibration
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
z_obs = loader.cat["z_obs"]

r_hMpc = loader.cat["r_hMpc"]
e_r_hMpc = loader.cat["e_rhMpc"]
In [222]:
model = csiborgtools.flow.SD_PV_validation_model(los_overdensity, los_velocity, RA, dec, z_obs, r_hMpc, e_r_hMpc, loader.rdist, Omega_m)

# model_old = csiborgtools.flow.SN_PV_validation_model_old
In [223]:
true_samples = {'Vext_x': jnp.array(0.0, dtype=jnp.float32),
                'Vext_y': jnp.array(0.0, dtype=jnp.float32),
                'Vext_z': jnp.array(0.0, dtype=jnp.float32),
                'alpha': jnp.array(1, dtype=jnp.float32),
                'beta': jnp.array(1, dtype=jnp.float32),
                'sigma_v': jnp.array(112, dtype=jnp.float32),
                }

util.log_likelihood(model, true_samples)
Out[223]:
{'ll': Array(-3291.0427, dtype=float32)}
In [228]:
nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_warmup=500, num_samples=500, chain_method="sequential")
rng_key = jax.random.PRNGKey(0)
In [229]:
mcmc.run(rng_key)
sample: 100%|██████████| 1000/1000 [01:15<00:00, 13.27it/s, 3 steps of size 7.11e-01. acc. prob=0.88]
In [231]:
mcmc.print_summary()
samples = mcmc.get_samples(group_by_chain=False)
                mean       std    median      5.0%     95.0%     n_eff     r_hat
    Vext_x    -62.10     18.47    -61.58    -97.45    -36.33    655.27      1.00
    Vext_y     24.97     27.82     24.77    -12.97     78.06    669.10      1.00
    Vext_z      3.54     25.23      2.67    -37.75     42.72    495.87      1.00
     alpha      1.64      0.21      1.65      1.29      1.98    473.75      1.00
      beta      0.83      0.06      0.84      0.73      0.94    542.08      1.00
   sigma_v    158.64     14.09    158.77    133.78    180.44    627.47      1.00

Number of divergences: 0
In [232]:
plt.figure()
plt.scatter(samples["alpha"], samples["beta"])
plt.show()
No description has been provided for this image

Vizualize the results

In [49]:
with File("/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_A2_Carrick2015.hdf5", 'r') as f:
    beta = f["sim_0/Vext_z"][:]
In [50]:
plt.figure()
plt.hist(beta, bins="auto", density=True, histtype="step")

plt.show()
No description has been provided for this image
In [ ]: