mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-04 03:24:14 +00:00
ee222cd010
* Update nb * Update script * Update script * Rename * Update script * Update script * Remove warning * Ignore minors when extracting MAH * Fix paths bug * Move notebooks * Move files * Rename and delete things * Rename file * Move file * Rename things * Remove old print statement * Add basic MAH plot * Add random MAH path * Output snapshot numbers * Add MAH random extraction * Fix redshift bug * Edit script * Add extracting random MAH * Little updates * Add CB2 redshift * Add some caching * Add diagnostic plots * Add caching * Minor updates * Update nb * Update notebook * Update script * Add Sorce randoms * Add CB2 varysmall * Update nb * Update nb * Update nb * Use catalogue HMF * Move definition of radec2galactic * Update nb * Update import * Update import * Add galatic coords to catalogues * Update nb
198 KiB
198 KiB
Generate a mock peculiar velocity catalogue from CSiBORG haloes.¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from h5py import File
from scipy.interpolate import interp1d
from astropy.cosmology import FlatLambdaCDM
import csiborgtools
%matplotlib inline
%load_ext autoreload
%autoreload 2
SPEED_OF_LIGHT = 299_792.458
In [2]:
def dist2redshift(dist, cosmo):
x = np.linspace(0., 1., int(1e5))
y = cosmo.comoving_distance(x).value
return interp1d(y, x, kind="cubic")(dist)
In [3]:
nsim = 17417
nsnap = 99
kind = "main"
cat = csiborgtools.read.CSiBORG2SUBFINDCatalogue(nsim, nsnap, kind)
cosmo = FlatLambdaCDM(H0=100, Om0=0.3111)
In [4]:
dist, RA, dec = [cat["spherical_pos"][:, i] for i in range(3)]
Vx, Vy, Vz = [cat["cartesian_vel"][:, i] for i in range(3)]
vrad = csiborgtools.flow.project_Vext(Vx, Vy, Vz, np.deg2rad(RA), np.deg2rad(dec))
zcosmo = dist2redshift(dist, cosmo)
zobs = (1 + zcosmo) * (1 + vrad / SPEED_OF_LIGHT) - 1
data = {"r_hMpc": dist,
"RA": RA,
"DEC": dec,
"vrad": vrad,
"zcosmo": zcosmo,
"zobs": zobs}
In [5]:
plt.figure()
plt.scatter(zcosmo, zobs, s=0.01)
plt.axline((0, 0), slope=1, color="red", linestyle="--")
plt.xlabel(r"$z_{\rm cosmo}$")
plt.ylabel(r"$z_{\rm obs}$")
plt.show()
In [6]:
plt.figure()
plt.scatter(zcosmo, zobs - zcosmo, s=0.01)
plt.axhline(0, color="red", linestyle="--")
plt.xlabel(r"$z_{\rm cosmo}$")
plt.ylabel(r"$z_{\rm obs} - z_{\rm cosmo}$")
plt.show()
In [7]:
mask = (cat["totmass"] > 5e12) & (cat["totmass"] < 1e13) & cat["Central"] & (cat["dist"] < 135.5)
In [10]:
choice = np.random.choice(np.arange(len(cat))[mask], size=100)
In [11]:
fname = f"/mnt/extraspace/rstiskalek/catalogs/PV_mock_CB2_{nsim}_small.hdf5"
with File(fname, "w") as f:
for key, value in data.items():
f.create_dataset(key, data=value[choice])
In [ ]: