mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 02:28:02 +00:00
04119a5314
* pep8 * fix convention * Update script * enforce optimisation boundaries to be finite * Update TODO * Remove sky matching * FIx a small bug * fix bug * Remove import * Add halo fitted quantities * Update nbs * update README * Add load_initial comments * Rename nbs * Delete nb * Update imports * Rename function * Update matcher * Add overlap paths * Update the matching script * Update verbosity * Add verbosity flags * Simplify make_bckg_delta * bug fix * fix bug
101 KiB
101 KiB
In [1]:
import numpy as np
import numpy
%matplotlib notebook
import matplotlib
import matplotlib.pyplot as plt
try:
import csiborgtools
except ModuleNotFoundError:
print("not found")
import sys
sys.path.append("../")
import csiborgtools
# import utils
import joblib
from scipy.stats import spearmanr
from datetime import datetime
from tqdm import tqdm, trange
from numba import jit
from scipy.ndimage import gaussian_filter
from os.path import join
%load_ext autoreload
%autoreload 2
%load_ext line_profiler
In [2]:
cat0 = csiborgtools.read.ClumpsCatalogue(7468)
catx = csiborgtools.read.ClumpsCatalogue(7588)
In [3]:
reader = csiborgtools.read.PairOverlap(cat0, catx, max_dist=150 / 0.705)
In [31]:
ks = np.argsort(reader.cat0("totpartmass"))[::-1]
k = ks[1]
plt.figure()
plt.scatter(reader.dist(False, "r200")[k], reader.mass_ratio()[k], c=reader.overlap(False)[k])
plt.colorbar(label="Overlap")
plt.title(r"$\log M_{{\rm tot}} / M_\odot = {:.4f}$".format(np.log10(reader.cat0("totpartmass")[k])))
plt.xlabel(r"$\Delta r_i / R_{200c}$")
plt.ylabel(r"$|\log \dfrac{M_i}{M_{\rm tot}}|$")
plt.tight_layout()
plt.show()
In [32]:
print("Starting: {}.".format(datetime.now()))
clumps0 = np.load("/mnt/extraspace/rstiskalek/csiborg/initmatch/clump_7468_particles.npy", allow_pickle=True)
print("Loaded `clump0`: {}.".format(datetime.now()))
clumpsx = np.load("/mnt/extraspace/rstiskalek/csiborg/initmatch/clump_7588_particles.npy", allow_pickle=True)
print("Loaded `clumpx`: {}.".format(datetime.now()))
overlapper = csiborgtools.match.ParticleOverlap()
hid2clumps0 = {hid: n for n, hid in enumerate(clumps0["ID"])}
hid2clumpsx = {hid: n for n, hid in enumerate(clumpsx["ID"])}
In [33]:
# Convert positions to cell IDs
overlapper.clumps_pos2cell(clumps0)
overlapper.clumps_pos2cell(clumpsx)
mins0, maxs0 = csiborgtools.match.get_halolims(clumps0, overlapper.inv_clength, overlapper.nshift)
minsx, maxsx = csiborgtools.match.get_halolims(clumpsx, overlapper.inv_clength, overlapper.nshift)
In [34]:
delta_bckg = overlapper.make_bckg_delta(clumps0)
delta_bckg = overlapper.make_bckg_delta(clumpsx, delta=delta_bckg)
In [369]:
smooth_kwargs = {"sigma": 1, "truncate": 4, "mode": "constant", "cval": 0.0}
delta_bckg_smooth = gaussian_filter(delta_bckg, **smooth_kwargs)
In [363]:
# k = 24734 # skull!
ks = np.argsort(reader.cat0("totpartmass"))[::-1]
# k = ks[1]
k = 331
n = 0
print("Ratio is ", summed_ratio[k])
print("Original overlap is ", overlap_raw[k][n])
print("Smoothed overlap is ", overlap_smoothed[k][n])
index_cl0 = hid2clumps0[reader.cat0("index", k)]
cl0 = clumps0[index_cl0][0]
mins_cl0, maxs_cl0 = mins0[index_cl0], maxs0[index_cl0]
index_clx = hid2clumpsx[reader.catx("index", reader["match_indxs"][k][n])]
clx = clumpsx[index_clx][0]
mins_clx, maxs_clx = minsx[index_clx], maxsx[index_clx]
delta1, delta2, cellmins, nonzero = overlapper.make_deltas(
cl0, clx, mins_cl0, maxs_cl0, mins_clx, maxs_clx, smooth_kwargs=smooth_kwargs)
csiborgtools.match.calculate_overlap(delta1, delta2, cellmins, delta_bckg_smooth)
Out[363]:
In [364]:
xs = []
for n in range(reader["match_indxs"][k].size):
index_clx = hid2clumpsx[reader.catx("index", reader["match_indxs"][k][n])]
clx = clumpsx[index_clx][0]
mins_clx, maxs_clx = minsx[index_clx], maxsx[index_clx]
print("NGP/smoothed overlap ", overlap_raw[k][n], overlap_smoothed[k][n])
delta1, delta2, cellmins, nonzero1 = overlapper.make_deltas(
cl0, clx, mins_cl0, maxs_cl0, mins_clx, maxs_clx, smooth_kwargs=smooth_kwargs)
x = csiborgtools.match.calculate_overlap(delta1, delta2, cellmins, delta_bckg_smooth)
print(x)
xs.append(x)
print("Sum is ", sum(xs))
print("Originally NGP/smoothed was ", summed_raw[k], summed_smoothed[k])
In [ ]:
In [ ]:
In [ ]:
In [ ]:
dlogm = [None] * len(indxs)
mass = [None] * len(indxs)
for k in trange(len(indxs)):
dlogm[k] = np.abs(np.log10(cat[0]["totpartmass"][k]) - np.log10(cat[1]["totpartmass"][indxs[k]]))
mass[k] = np.ones(indxs[k].size) * cat[0]["totpartmass"][k]
dlogm = np.asanyarray(dlogm)
mass = np.asanyarray(mass)
In [ ]:
plt.figure()
plt.scatter(np.concatenate(dlogm), np.concatenate(overlap), s=1, rasterized=True)
t = np.linspace(0, 2)
plt.plot(t, 10**(-t), c="red", label=r"$10^{-|\log M_1 / M_2|}$")
plt.xlabel(r"$|\log M_1 / M_2|$")
plt.ylabel(r"$\mathcal{O}$")
plt.legend()
plt.tight_layout()
# plt.savefig("../plots/mass_comparison.png", dpi=450)
plt.show()
In [ ]:
In [ ]:
for k in trange(len(indxs)):
if np.any((dlogm[k] > 1.75) & (overlap[k] > 0.15)):
print(k)
In [ ]:
k = 97788
print(dlogm[k])
print(overlap[k])
n = np.argmax(overlap[k])
index_cl0 = [cl[1] for cl in clumps0].index(cat[0][k]["index"])
cl0 = clumps0[index_cl0][0]
mins_cl0, maxs_cl0 = mins0[index_cl0], maxs0[index_cl0]
index_clx = [cl[1] for cl in clumpsx].index(cat[1]["index"][indxs[k]][n])
clx = clumpsx[index_clx][0]
mins_clx, maxs_clx = minsx[index_clx], maxsx[index_clx]
In [ ]:
delta1, delta2, cellmins = overlapper.make_deltas(cl0, clx, mins_cl0, maxs_cl0, mins_clx, maxs_clx)
In [ ]:
overlapper.overlap(delta1, delta2, cellmins, delta)
In [ ]:
delta1.sum() / delta2.sum()
In [ ]:
In [ ]:
plt.figure()
plt.imshow(np.sum(delta1, axis=2))
plt.show()
plt.figure()
plt.imshow(np.sum(delta2, axis=2))
plt.show()
In [ ]:
In [ ]:
In [ ]:
ncounter = len(indxs[k])
true_overlap = np.full(ncounter, np.nan)
spherical_overlap = np.full(ncounter, np.nan)
for n in trange(len(indxs[k])):
clx = clumpsx[[cl[1] for cl in clumpsx].index(cat[1]["index"][indxs[k]][n])][0]
R1 = (3 * cl0.size / (4 * np.pi))**(1./3) * 1 / 2048
R2 = (3 * clx.size / (4 * np.pi))**(1./3) * 1 / 2048
d = np.linalg.norm([np.mean(cl0[p]) - np.mean(clx[p]) for p in ('x', 'y', 'z')])
spherical_overlap[n] = csiborgtools.match.spherical_overlap(R1, R2, d)
true_overlap[n] = overlapper(cl0, clx, delta)
# print(true_overlap, spherical_overlap)
In [ ]:
plt.figure()
plt.scatter(true_overlap, spherical_overlap)
t = np.linspace(0, 1, 100)
plt.plot(t, t, c="k", ls="--")
plt.xlabel("True overlap")
plt.ylabel("Spherical overlap")
# plt.xscale("log")
# plt.yscale("log")
plt.show()
In [ ]:
In [ ]:
R1 = (3 * cl0.size / (4 * np.pi))**(1./3) * 1 / 2048
R2 = (3 * clx.size / (4 * np.pi))**(1./3) * 1 / 2048
d = np.linalg.norm([np.mean(cl0[p]) - np.mean(clx[p]) for p in ('x', 'y', 'z')])
In [ ]:
In [ ]:
In [ ]:
In [ ]:
box = cat[0].box
maverage = box.box2solarmass(clumps0[2][0]["M"][0])
cell = box.box2mpc(1/2048)
In [ ]:
n_sim = 0
import numpy
R = (3 * cat.cats[n_sim]["npart"] / (4 * numpy.pi))**(1./3) * 1 / 2048
R = cat.cats[n_sim].box.box2mpc(R)
In [ ]:
# dlogm = [None] * len(indxs)
# for k in trange(len(indxs)):
# dlogm[k] = np.abs(np.log10(cat[0]["totpartmass"][k]) - np.log10(cat[1]["totpartmass"][indxs[k]]))
# dlogm = np.asanyarray(dlogm)
normdist = [None] * len(indxs)
masses = [None] * len(indxs)
for k in trange(len(indxs)):
normdist[k] = dist0[k] / ((3 * cat[0]["totpartmass"][k] / (4 * np.pi * maverage))**(1/3) * cell)
masses[k] = np.log10(np.ones(indxs[k].size) * cat[0]["totpartmass"][k])
normdist = np.asanyarray(normdist)
masses = np.asanyarray(masses)
In [ ]:
plt.figure()
# plt.scatter(np.concatenate(normdist), np.concatenate(overlap), c=np.concatenate(masses), s=4)
plt.scatter(np.concatenate(normdist), np.concatenate(masses), c=np.concatenate(overlap), s=4)
plt.colorbar()
# plt.xlabel(r"$z = 0$ normalised separation by $\hat{R}$")
# plt.xlabel(r"Absolute difference in total mass [dex]")
# plt.xscale("log")
# plt.ylabel(r"$\mathcal{O}$")
plt.xscale("log")
plt.tight_layout()
# plt.savefig("../plots/another_view.png", dpi=450)
plt.show()
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
cl0 = clumps0[[cl[1] for cl in clumps0].index(cat[0][k]["index"])][0]
clx = clumpsx[[cl[1] for cl in clumpsx].index(cat[1]["index"][indxs[k]][n])][0]
In [ ]: