csiborgtools/notebooks/powerspectrum_test.ipynb
Richard Stiskalek aaa14fc880
Add density field plot and start preparing CSiBORG2 (#94)
* Add RAMSES2HDF5 conversion

* Upload changes

* Clean up

* More clean up

* updates

* Little change

* pep9

* Add basic SPH calculation for a snapshot

* Add submit script

* Remove echo

* Little changes

* Send off changes

* Little formatting

* Little updates

* Add nthreads argument

* Upload chagnes

* Add nthreads arguemnts

* Some local changes..

* Update scripts

* Add submission script

* Update script

* Update params

* Rename CSiBORGBox to CSiBORG1box

* Rename CSiBORG1 reader

* Move files

* Rename folder again

* Add basic plotting here

* Add new skeletons

* Move def

* Update nbs

* Edit directories

* Rename files

* Add units to converted snapshots

* Fix empty dataset bug

* Delete file

* Edits to submission scripts

* Edit paths

* Update .gitignore

* Fix attrs

* Update weighting

* Fix RA/dec bug

* Add FORNAX cluster

* Little edit

* Remove boxes since will no longer need

* Move func back

* Edit to include sort by membership

* Edit paths

* Purge basic things

* Start removing

* Bring file back

* Scratch

* Update the rest

* Improve the entire file

* Remove old things

* Remove old

* Delete old things

* Fully updates

* Rename file

* Edit submit script

* Little things

* Add print statement

* Add here cols_to_structured

* Edit halo cat

* Remove old import

* Add comment

* Update paths manager

* Move file

* Remove file

* Add chains
2023-12-13 16:08:25 +00:00

1,009 KiB

In [1]:
import matplotlib.pyplot as plt
import numpy
import scienceplots
from h5py import File

import plt_utils


%load_ext autoreload
%autoreload 2
In [12]:
with File("/mnt/extraspace/rstiskalek/csiborg_postprocessing/ACL/BORG2_0.25.hdf5", 'r') as f:
    voxel_acl = f['voxel_acl'][...].flatten()
    voxel_dist = f['voxel_dist'][...].flatten()
In [28]:
bins = numpy.linspace(0, 100, 10)


plt.figure()

mask = voxel_dist < 20
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$0 < R / (\mathrm{Mpc} / h)  < 20$")

mask = (voxel_dist > 20) & (voxel_dist < 40)
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$20 < R / (\mathrm{Mpc} / h)  < 40$")

mask = (voxel_dist > 40) & (voxel_dist < 60)
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$40 < R / (\mathrm{Mpc} / h)  < 60$")

# plt.scatter(voxel_dist.flatten(), voxel_acl.flatten(), s=0.1)
plt.legend()
plt.title("ACL of individual voxels")
plt.xlabel(r"$\mathrm{ACL}$")
plt.ylabel(r"Normalized bin counts")

plt.tight_layout()
plt.savefig("../plots/BORG_Stephen_ACL.png", dpi=450)
plt.show()
No description has been provided for this image
In [ ]: