csiborgtools/scripts_plots/paper_environment.ipynb
Richard Stiskalek 9e4b34f579
Overlap fixing and more (#107)
* Update README

* Update density field reader

* Update name of SDSSxALFAFA

* Fix quick bug

* Add little fixes

* Update README

* Put back fit_init

* Add paths to initial snapshots

* Add export

* Remove some choices

* Edit README

* Add Jens' comments

* Organize imports

* Rename snapshot

* Add additional print statement

* Add paths to initial snapshots

* Add masses to the initial files

* Add normalization

* Edit README

* Update README

* Fix bug in CSiBORG1 so that does not read fof_00001

* Edit README

* Edit README

* Overwrite comments

* Add paths to init lag

* Fix Quijote path

* Add lagpatch

* Edit submits

* Update README

* Fix numpy int problem

* Update README

* Add a flag to keep the snapshots open when fitting

* Add a flag to keep snapshots open

* Comment out some path issue

* Keep snapshots open

* Access directly snasphot

* Add lagpatch for CSiBORG2

* Add treatment of x-z coordinates flipping

* Add radial velocity field loader

* Update README

* Add lagpatch to Quijote

* Fix typo

* Add setter

* Fix typo

* Update README

* Add output halo cat as ASCII

* Add import

* Add halo plot

* Update README

* Add evaluating field at radial distanfe

* Add field shell evaluation

* Add enclosed mass computation

* Add BORG2 import

* Add BORG boxsize

* Add BORG paths

* Edit run

* Add BORG2 overdensity field

* Add bulk flow clauclation

* Update README

* Add new plots

* Add nbs

* Edit paper

* Update plotting

* Fix overlap paths to contain simname

* Add normalization of positions

* Add default paths to CSiBORG1

* Add overlap path simname

* Fix little things

* Add CSiBORG2 catalogue

* Update README

* Add import

* Add TNG density field constructor

* Add TNG density

* Add draft of calculating BORG ACL

* Fix bug

* Add ACL of enclosed density

* Add nmean acl

* Add galaxy bias calculation

* Add BORG acl notebook

* Add enclosed mass calculation

* Add TNG300-1 dir

* Add TNG300 and BORG1 dir

* Update nb
2024-01-30 16:14:07 +00:00

829 KiB

In [1]:
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
import joblib
from tqdm import tqdm
try:
    import csiborgtools
except ModuleNotFoundError:
    print("not found")
    import sys
    sys.path.append("../")
    import csiborgtools


%matplotlib notebook
%load_ext autoreload
%autoreload 2
not found
In [2]:
cat1 = csiborgtools.read.HaloCatalogue(7444, min_mass=1e13, max_dist=155 / 0.705)
cat2 = csiborgtools.read.HaloCatalogue(7468, min_mass=1e13, max_dist=155 / 0.705)
In [3]:
knncdf = csiborgtools.match.kNN_CDF()


knn1 = NearestNeighbors()
knn1.fit(cat1.positions)

knn2 = NearestNeighbors()
knn2.fit(cat2.positions)

# rs, cdf = knncdf(knn, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,
#                   nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))
Out[3]:
NearestNeighbors()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
NearestNeighbors()
In [24]:
!ls /mnt/extraspace/rstiskalek/csiborg/knn/cross/knncdf_7444_7468.p
knncdf_7444.p  knncdf_7468.p  knncdf_7492.p  knncdf_7516.p  knncdf_7540.p
In [42]:
from glob import glob
In [45]:
files = glob("/mnt/extraspace/rstiskalek/csiborg/knn/cross/*")
In [46]:

In [84]:
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]

plt.figure()
for file in files:
    d = joblib.load(file)
    mask = d["rs"] > 0.1
    plt.plot(d["rs"][mask], d["corr_0"][0, mask], c=cols[0], lw=0.4)

plt.xscale("log")
plt.axvline(2.65 / 0.705, lw=0.8, c="red", ls="--")
# plt.yscale("log")

plt.show()
No description has been provided for this image
In [ ]:

In [40]:
5500 / comb(5, 3)
Out[40]:
550.0
In [38]:
plt.figure()
plt.plot(d["rs"], d["corr_0"][1, :])
plt.plot(d["rs"], d["corr_1"][1, :])
plt.plot(d["rs"], d["corr_2"][1, :])

# plt.yscale("log")
# plt.xscale("log")
plt.show()
No description has been provided for this image
In [ ]:

In [4]:
# rs, cdf = knncdf(knn1, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,
#                  nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))

rs, cdf0, cdf1, joint_cdf = knncdf.joint(knn1, knn2, nneighbours=8, Rmax=155 / 0.705,
                                         rmin=0.01, rmax=100, nsamples=int(1e6), neval=int(1e4),
                                         random_state=42, batch_size=int(1e6))
In [5]:
cdf0 = knncdf.clipped_cdf(cdf0)
cdf1 = knncdf.clipped_cdf(cdf1)
joint_cdf = knncdf.clipped_cdf(joint_cdf)
In [7]:
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
In [14]:
ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
       7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,
       7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,
       8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,
       8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,
       8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,
       9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,
       9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,
       9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
       9820, 9844]
In [17]:
from scipy.special import comb

from itertools import combinations
# for subset in itertools.combinations(stuff, L):
In [22]:
list(combinations(ics, 2))
Out[22]:
[(7444, 7468),
 (7444, 7492),
 (7444, 7516),
 (7444, 7540),
 (7444, 7564),
 (7444, 7588),
 (7444, 7612),
 (7444, 7636),
 (7444, 7660),
 (7444, 7684),
 (7444, 7708),
 (7444, 7732),
 (7444, 7756),
 (7444, 7780),
 (7444, 7804),
 (7444, 7828),
 (7444, 7852),
 (7444, 7876),
 (7444, 7900),
 (7444, 7924),
 (7444, 7948),
 (7444, 7972),
 (7444, 7996),
 (7444, 8020),
 (7444, 8044),
 (7444, 8068),
 (7444, 8092),
 (7444, 8116),
 (7444, 8140),
 (7444, 8164),
 (7444, 8188),
 (7444, 8212),
 (7444, 8236),
 (7444, 8260),
 (7444, 8284),
 (7444, 8308),
 (7444, 8332),
 (7444, 8356),
 (7444, 8380),
 (7444, 8404),
 (7444, 8428),
 (7444, 8452),
 (7444, 8476),
 (7444, 8500),
 (7444, 8524),
 (7444, 8548),
 (7444, 8572),
 (7444, 8596),
 (7444, 8620),
 (7444, 8644),
 (7444, 8668),
 (7444, 8692),
 (7444, 8716),
 (7444, 8740),
 (7444, 8764),
 (7444, 8788),
 (7444, 8812),
 (7444, 8836),
 (7444, 8860),
 (7444, 8884),
 (7444, 8908),
 (7444, 8932),
 (7444, 8956),
 (7444, 8980),
 (7444, 9004),
 (7444, 9028),
 (7444, 9052),
 (7444, 9076),
 (7444, 9100),
 (7444, 9124),
 (7444, 9148),
 (7444, 9172),
 (7444, 9196),
 (7444, 9220),
 (7444, 9244),
 (7444, 9268),
 (7444, 9292),
 (7444, 9316),
 (7444, 9340),
 (7444, 9364),
 (7444, 9388),
 (7444, 9412),
 (7444, 9436),
 (7444, 9460),
 (7444, 9484),
 (7444, 9508),
 (7444, 9532),
 (7444, 9556),
 (7444, 9580),
 (7444, 9604),
 (7444, 9628),
 (7444, 9652),
 (7444, 9676),
 (7444, 9700),
 (7444, 9724),
 (7444, 9748),
 (7444, 9772),
 (7444, 9796),
 (7444, 9820),
 (7444, 9844),
 (7468, 7492),
 (7468, 7516),
 (7468, 7540),
 (7468, 7564),
 (7468, 7588),
 (7468, 7612),
 (7468, 7636),
 (7468, 7660),
 (7468, 7684),
 (7468, 7708),
 (7468, 7732),
 (7468, 7756),
 (7468, 7780),
 (7468, 7804),
 (7468, 7828),
 (7468, 7852),
 (7468, 7876),
 (7468, 7900),
 (7468, 7924),
 (7468, 7948),
 (7468, 7972),
 (7468, 7996),
 (7468, 8020),
 (7468, 8044),
 (7468, 8068),
 (7468, 8092),
 (7468, 8116),
 (7468, 8140),
 (7468, 8164),
 (7468, 8188),
 (7468, 8212),
 (7468, 8236),
 (7468, 8260),
 (7468, 8284),
 (7468, 8308),
 (7468, 8332),
 (7468, 8356),
 (7468, 8380),
 (7468, 8404),
 (7468, 8428),
 (7468, 8452),
 (7468, 8476),
 (7468, 8500),
 (7468, 8524),
 (7468, 8548),
 (7468, 8572),
 (7468, 8596),
 (7468, 8620),
 (7468, 8644),
 (7468, 8668),
 (7468, 8692),
 (7468, 8716),
 (7468, 8740),
 (7468, 8764),
 (7468, 8788),
 (7468, 8812),
 (7468, 8836),
 (7468, 8860),
 (7468, 8884),
 (7468, 8908),
 (7468, 8932),
 (7468, 8956),
 (7468, 8980),
 (7468, 9004),
 (7468, 9028),
 (7468, 9052),
 (7468, 9076),
 (7468, 9100),
 (7468, 9124),
 (7468, 9148),
 (7468, 9172),
 (7468, 9196),
 (7468, 9220),
 (7468, 9244),
 (7468, 9268),
 (7468, 9292),
 (7468, 9316),
 (7468, 9340),
 (7468, 9364),
 (7468, 9388),
 (7468, 9412),
 (7468, 9436),
 (7468, 9460),
 (7468, 9484),
 (7468, 9508),
 (7468, 9532),
 (7468, 9556),
 (7468, 9580),
 (7468, 9604),
 (7468, 9628),
 (7468, 9652),
 (7468, 9676),
 (7468, 9700),
 (7468, 9724),
 (7468, 9748),
 (7468, 9772),
 (7468, 9796),
 (7468, 9820),
 (7468, 9844),
 (7492, 7516),
 (7492, 7540),
 (7492, 7564),
 (7492, 7588),
 (7492, 7612),
 (7492, 7636),
 (7492, 7660),
 (7492, 7684),
 (7492, 7708),
 (7492, 7732),
 (7492, 7756),
 (7492, 7780),
 (7492, 7804),
 (7492, 7828),
 (7492, 7852),
 (7492, 7876),
 (7492, 7900),
 (7492, 7924),
 (7492, 7948),
 (7492, 7972),
 (7492, 7996),
 (7492, 8020),
 (7492, 8044),
 (7492, 8068),
 (7492, 8092),
 (7492, 8116),
 (7492, 8140),
 (7492, 8164),
 (7492, 8188),
 (7492, 8212),
 (7492, 8236),
 (7492, 8260),
 (7492, 8284),
 (7492, 8308),
 (7492, 8332),
 (7492, 8356),
 (7492, 8380),
 (7492, 8404),
 (7492, 8428),
 (7492, 8452),
 (7492, 8476),
 (7492, 8500),
 (7492, 8524),
 (7492, 8548),
 (7492, 8572),
 (7492, 8596),
 (7492, 8620),
 (7492, 8644),
 (7492, 8668),
 (7492, 8692),
 (7492, 8716),
 (7492, 8740),
 (7492, 8764),
 (7492, 8788),
 (7492, 8812),
 (7492, 8836),
 (7492, 8860),
 (7492, 8884),
 (7492, 8908),
 (7492, 8932),
 (7492, 8956),
 (7492, 8980),
 (7492, 9004),
 (7492, 9028),
 (7492, 9052),
 (7492, 9076),
 (7492, 9100),
 (7492, 9124),
 (7492, 9148),
 (7492, 9172),
 (7492, 9196),
 (7492, 9220),
 (7492, 9244),
 (7492, 9268),
 (7492, 9292),
 (7492, 9316),
 (7492, 9340),
 (7492, 9364),
 (7492, 9388),
 (7492, 9412),
 (7492, 9436),
 (7492, 9460),
 (7492, 9484),
 (7492, 9508),
 (7492, 9532),
 (7492, 9556),
 (7492, 9580),
 (7492, 9604),
 (7492, 9628),
 (7492, 9652),
 (7492, 9676),
 (7492, 9700),
 (7492, 9724),
 (7492, 9748),
 (7492, 9772),
 (7492, 9796),
 (7492, 9820),
 (7492, 9844),
 (7516, 7540),
 (7516, 7564),
 (7516, 7588),
 (7516, 7612),
 (7516, 7636),
 (7516, 7660),
 (7516, 7684),
 (7516, 7708),
 (7516, 7732),
 (7516, 7756),
 (7516, 7780),
 (7516, 7804),
 (7516, 7828),
 (7516, 7852),
 (7516, 7876),
 (7516, 7900),
 (7516, 7924),
 (7516, 7948),
 (7516, 7972),
 (7516, 7996),
 (7516, 8020),
 (7516, 8044),
 (7516, 8068),
 (7516, 8092),
 (7516, 8116),
 (7516, 8140),
 (7516, 8164),
 (7516, 8188),
 (7516, 8212),
 (7516, 8236),
 (7516, 8260),
 (7516, 8284),
 (7516, 8308),
 (7516, 8332),
 (7516, 8356),
 (7516, 8380),
 (7516, 8404),
 (7516, 8428),
 (7516, 8452),
 (7516, 8476),
 (7516, 8500),
 (7516, 8524),
 (7516, 8548),
 (7516, 8572),
 (7516, 8596),
 (7516, 8620),
 (7516, 8644),
 (7516, 8668),
 (7516, 8692),
 (7516, 8716),
 (7516, 8740),
 (7516, 8764),
 (7516, 8788),
 (7516, 8812),
 (7516, 8836),
 (7516, 8860),
 (7516, 8884),
 (7516, 8908),
 (7516, 8932),
 (7516, 8956),
 (7516, 8980),
 (7516, 9004),
 (7516, 9028),
 (7516, 9052),
 (7516, 9076),
 (7516, 9100),
 (7516, 9124),
 (7516, 9148),
 (7516, 9172),
 (7516, 9196),
 (7516, 9220),
 (7516, 9244),
 (7516, 9268),
 (7516, 9292),
 (7516, 9316),
 (7516, 9340),
 (7516, 9364),
 (7516, 9388),
 (7516, 9412),
 (7516, 9436),
 (7516, 9460),
 (7516, 9484),
 (7516, 9508),
 (7516, 9532),
 (7516, 9556),
 (7516, 9580),
 (7516, 9604),
 (7516, 9628),
 (7516, 9652),
 (7516, 9676),
 (7516, 9700),
 (7516, 9724),
 (7516, 9748),
 (7516, 9772),
 (7516, 9796),
 (7516, 9820),
 (7516, 9844),
 (7540, 7564),
 (7540, 7588),
 (7540, 7612),
 (7540, 7636),
 (7540, 7660),
 (7540, 7684),
 (7540, 7708),
 (7540, 7732),
 (7540, 7756),
 (7540, 7780),
 (7540, 7804),
 (7540, 7828),
 (7540, 7852),
 (7540, 7876),
 (7540, 7900),
 (7540, 7924),
 (7540, 7948),
 (7540, 7972),
 (7540, 7996),
 (7540, 8020),
 (7540, 8044),
 (7540, 8068),
 (7540, 8092),
 (7540, 8116),
 (7540, 8140),
 (7540, 8164),
 (7540, 8188),
 (7540, 8212),
 (7540, 8236),
 (7540, 8260),
 (7540, 8284),
 (7540, 8308),
 (7540, 8332),
 (7540, 8356),
 (7540, 8380),
 (7540, 8404),
 (7540, 8428),
 (7540, 8452),
 (7540, 8476),
 (7540, 8500),
 (7540, 8524),
 (7540, 8548),
 (7540, 8572),
 (7540, 8596),
 (7540, 8620),
 (7540, 8644),
 (7540, 8668),
 (7540, 8692),
 (7540, 8716),
 (7540, 8740),
 (7540, 8764),
 (7540, 8788),
 (7540, 8812),
 (7540, 8836),
 (7540, 8860),
 (7540, 8884),
 (7540, 8908),
 (7540, 8932),
 (7540, 8956),
 (7540, 8980),
 (7540, 9004),
 (7540, 9028),
 (7540, 9052),
 (7540, 9076),
 (7540, 9100),
 (7540, 9124),
 (7540, 9148),
 (7540, 9172),
 (7540, 9196),
 (7540, 9220),
 (7540, 9244),
 (7540, 9268),
 (7540, 9292),
 (7540, 9316),
 (7540, 9340),
 (7540, 9364),
 (7540, 9388),
 (7540, 9412),
 (7540, 9436),
 (7540, 9460),
 (7540, 9484),
 (7540, 9508),
 (7540, 9532),
 (7540, 9556),
 (7540, 9580),
 (7540, 9604),
 (7540, 9628),
 (7540, 9652),
 (7540, 9676),
 (7540, 9700),
 (7540, 9724),
 (7540, 9748),
 (7540, 9772),
 (7540, 9796),
 (7540, 9820),
 (7540, 9844),
 (7564, 7588),
 (7564, 7612),
 (7564, 7636),
 (7564, 7660),
 (7564, 7684),
 (7564, 7708),
 (7564, 7732),
 (7564, 7756),
 (7564, 7780),
 (7564, 7804),
 (7564, 7828),
 (7564, 7852),
 (7564, 7876),
 (7564, 7900),
 (7564, 7924),
 (7564, 7948),
 (7564, 7972),
 (7564, 7996),
 (7564, 8020),
 (7564, 8044),
 (7564, 8068),
 (7564, 8092),
 (7564, 8116),
 (7564, 8140),
 (7564, 8164),
 (7564, 8188),
 (7564, 8212),
 (7564, 8236),
 (7564, 8260),
 (7564, 8284),
 (7564, 8308),
 (7564, 8332),
 (7564, 8356),
 (7564, 8380),
 (7564, 8404),
 (7564, 8428),
 (7564, 8452),
 (7564, 8476),
 (7564, 8500),
 (7564, 8524),
 (7564, 8548),
 (7564, 8572),
 (7564, 8596),
 (7564, 8620),
 (7564, 8644),
 (7564, 8668),
 (7564, 8692),
 (7564, 8716),
 (7564, 8740),
 (7564, 8764),
 (7564, 8788),
 (7564, 8812),
 (7564, 8836),
 (7564, 8860),
 (7564, 8884),
 (7564, 8908),
 (7564, 8932),
 (7564, 8956),
 (7564, 8980),
 (7564, 9004),
 (7564, 9028),
 (7564, 9052),
 (7564, 9076),
 (7564, 9100),
 (7564, 9124),
 (7564, 9148),
 (7564, 9172),
 (7564, 9196),
 (7564, 9220),
 (7564, 9244),
 (7564, 9268),
 (7564, 9292),
 (7564, 9316),
 (7564, 9340),
 (7564, 9364),
 (7564, 9388),
 (7564, 9412),
 (7564, 9436),
 (7564, 9460),
 (7564, 9484),
 (7564, 9508),
 (7564, 9532),
 (7564, 9556),
 (7564, 9580),
 (7564, 9604),
 (7564, 9628),
 (7564, 9652),
 (7564, 9676),
 (7564, 9700),
 (7564, 9724),
 (7564, 9748),
 (7564, 9772),
 (7564, 9796),
 (7564, 9820),
 (7564, 9844),
 (7588, 7612),
 (7588, 7636),
 (7588, 7660),
 (7588, 7684),
 (7588, 7708),
 (7588, 7732),
 (7588, 7756),
 (7588, 7780),
 (7588, 7804),
 (7588, 7828),
 (7588, 7852),
 (7588, 7876),
 (7588, 7900),
 (7588, 7924),
 (7588, 7948),
 (7588, 7972),
 (7588, 7996),
 (7588, 8020),
 (7588, 8044),
 (7588, 8068),
 (7588, 8092),
 (7588, 8116),
 (7588, 8140),
 (7588, 8164),
 (7588, 8188),
 (7588, 8212),
 (7588, 8236),
 (7588, 8260),
 (7588, 8284),
 (7588, 8308),
 (7588, 8332),
 (7588, 8356),
 (7588, 8380),
 (7588, 8404),
 (7588, 8428),
 (7588, 8452),
 (7588, 8476),
 (7588, 8500),
 (7588, 8524),
 (7588, 8548),
 (7588, 8572),
 (7588, 8596),
 (7588, 8620),
 (7588, 8644),
 (7588, 8668),
 (7588, 8692),
 (7588, 8716),
 (7588, 8740),
 (7588, 8764),
 (7588, 8788),
 (7588, 8812),
 (7588, 8836),
 (7588, 8860),
 (7588, 8884),
 (7588, 8908),
 (7588, 8932),
 (7588, 8956),
 (7588, 8980),
 (7588, 9004),
 (7588, 9028),
 (7588, 9052),
 (7588, 9076),
 (7588, 9100),
 (7588, 9124),
 (7588, 9148),
 (7588, 9172),
 (7588, 9196),
 (7588, 9220),
 (7588, 9244),
 (7588, 9268),
 (7588, 9292),
 (7588, 9316),
 (7588, 9340),
 (7588, 9364),
 (7588, 9388),
 (7588, 9412),
 (7588, 9436),
 (7588, 9460),
 (7588, 9484),
 (7588, 9508),
 (7588, 9532),
 (7588, 9556),
 (7588, 9580),
 (7588, 9604),
 (7588, 9628),
 (7588, 9652),
 (7588, 9676),
 (7588, 9700),
 (7588, 9724),
 (7588, 9748),
 (7588, 9772),
 (7588, 9796),
 (7588, 9820),
 (7588, 9844),
 (7612, 7636),
 (7612, 7660),
 (7612, 7684),
 (7612, 7708),
 (7612, 7732),
 (7612, 7756),
 (7612, 7780),
 (7612, 7804),
 (7612, 7828),
 (7612, 7852),
 (7612, 7876),
 (7612, 7900),
 (7612, 7924),
 (7612, 7948),
 (7612, 7972),
 (7612, 7996),
 (7612, 8020),
 (7612, 8044),
 (7612, 8068),
 (7612, 8092),
 (7612, 8116),
 (7612, 8140),
 (7612, 8164),
 (7612, 8188),
 (7612, 8212),
 (7612, 8236),
 (7612, 8260),
 (7612, 8284),
 (7612, 8308),
 (7612, 8332),
 (7612, 8356),
 (7612, 8380),
 (7612, 8404),
 (7612, 8428),
 (7612, 8452),
 (7612, 8476),
 (7612, 8500),
 (7612, 8524),
 (7612, 8548),
 (7612, 8572),
 (7612, 8596),
 (7612, 8620),
 (7612, 8644),
 (7612, 8668),
 (7612, 8692),
 (7612, 8716),
 (7612, 8740),
 (7612, 8764),
 (7612, 8788),
 (7612, 8812),
 (7612, 8836),
 (7612, 8860),
 (7612, 8884),
 (7612, 8908),
 (7612, 8932),
 (7612, 8956),
 (7612, 8980),
 (7612, 9004),
 (7612, 9028),
 (7612, 9052),
 (7612, 9076),
 (7612, 9100),
 (7612, 9124),
 (7612, 9148),
 (7612, 9172),
 (7612, 9196),
 (7612, 9220),
 (7612, 9244),
 (7612, 9268),
 (7612, 9292),
 (7612, 9316),
 (7612, 9340),
 (7612, 9364),
 (7612, 9388),
 (7612, 9412),
 (7612, 9436),
 (7612, 9460),
 (7612, 9484),
 (7612, 9508),
 (7612, 9532),
 (7612, 9556),
 (7612, 9580),
 (7612, 9604),
 (7612, 9628),
 (7612, 9652),
 (7612, 9676),
 (7612, 9700),
 (7612, 9724),
 (7612, 9748),
 (7612, 9772),
 (7612, 9796),
 (7612, 9820),
 (7612, 9844),
 (7636, 7660),
 (7636, 7684),
 (7636, 7708),
 (7636, 7732),
 (7636, 7756),
 (7636, 7780),
 (7636, 7804),
 (7636, 7828),
 (7636, 7852),
 (7636, 7876),
 (7636, 7900),
 (7636, 7924),
 (7636, 7948),
 (7636, 7972),
 (7636, 7996),
 (7636, 8020),
 (7636, 8044),
 (7636, 8068),
 (7636, 8092),
 (7636, 8116),
 (7636, 8140),
 (7636, 8164),
 (7636, 8188),
 (7636, 8212),
 (7636, 8236),
 (7636, 8260),
 (7636, 8284),
 (7636, 8308),
 (7636, 8332),
 (7636, 8356),
 (7636, 8380),
 (7636, 8404),
 (7636, 8428),
 (7636, 8452),
 (7636, 8476),
 (7636, 8500),
 (7636, 8524),
 (7636, 8548),
 (7636, 8572),
 (7636, 8596),
 (7636, 8620),
 (7636, 8644),
 (7636, 8668),
 (7636, 8692),
 (7636, 8716),
 (7636, 8740),
 (7636, 8764),
 (7636, 8788),
 (7636, 8812),
 (7636, 8836),
 (7636, 8860),
 (7636, 8884),
 (7636, 8908),
 (7636, 8932),
 (7636, 8956),
 (7636, 8980),
 (7636, 9004),
 (7636, 9028),
 (7636, 9052),
 (7636, 9076),
 (7636, 9100),
 (7636, 9124),
 (7636, 9148),
 (7636, 9172),
 (7636, 9196),
 (7636, 9220),
 (7636, 9244),
 (7636, 9268),
 (7636, 9292),
 (7636, 9316),
 (7636, 9340),
 (7636, 9364),
 (7636, 9388),
 (7636, 9412),
 (7636, 9436),
 (7636, 9460),
 (7636, 9484),
 (7636, 9508),
 (7636, 9532),
 (7636, 9556),
 (7636, 9580),
 (7636, 9604),
 (7636, 9628),
 (7636, 9652),
 (7636, 9676),
 (7636, 9700),
 (7636, 9724),
 (7636, 9748),
 (7636, 9772),
 (7636, 9796),
 (7636, 9820),
 (7636, 9844),
 (7660, 7684),
 (7660, 7708),
 (7660, 7732),
 (7660, 7756),
 (7660, 7780),
 (7660, 7804),
 (7660, 7828),
 (7660, 7852),
 (7660, 7876),
 (7660, 7900),
 (7660, 7924),
 (7660, 7948),
 (7660, 7972),
 (7660, 7996),
 (7660, 8020),
 (7660, 8044),
 (7660, 8068),
 (7660, 8092),
 (7660, 8116),
 (7660, 8140),
 (7660, 8164),
 (7660, 8188),
 (7660, 8212),
 (7660, 8236),
 (7660, 8260),
 (7660, 8284),
 (7660, 8308),
 (7660, 8332),
 (7660, 8356),
 (7660, 8380),
 (7660, 8404),
 (7660, 8428),
 (7660, 8452),
 (7660, 8476),
 (7660, 8500),
 (7660, 8524),
 (7660, 8548),
 (7660, 8572),
 (7660, 8596),
 (7660, 8620),
 (7660, 8644),
 (7660, 8668),
 (7660, 8692),
 (7660, 8716),
 (7660, 8740),
 (7660, 8764),
 (7660, 8788),
 (7660, 8812),
 (7660, 8836),
 (7660, 8860),
 (7660, 8884),
 (7660, 8908),
 (7660, 8932),
 (7660, 8956),
 (7660, 8980),
 (7660, 9004),
 (7660, 9028),
 (7660, 9052),
 (7660, 9076),
 (7660, 9100),
 (7660, 9124),
 (7660, 9148),
 (7660, 9172),
 (7660, 9196),
 (7660, 9220),
 (7660, 9244),
 (7660, 9268),
 (7660, 9292),
 (7660, 9316),
 (7660, 9340),
 (7660, 9364),
 (7660, 9388),
 (7660, 9412),
 (7660, 9436),
 (7660, 9460),
 (7660, 9484),
 (7660, 9508),
 (7660, 9532),
 (7660, 9556),
 (7660, 9580),
 (7660, 9604),
 (7660, 9628),
 (7660, 9652),
 (7660, 9676),
 (7660, 9700),
 (7660, 9724),
 (7660, 9748),
 (7660, 9772),
 (7660, 9796),
 (7660, 9820),
 (7660, 9844),
 (7684, 7708),
 (7684, 7732),
 (7684, 7756),
 (7684, 7780),
 (7684, 7804),
 (7684, 7828),
 (7684, 7852),
 (7684, 7876),
 (7684, 7900),
 (7684, 7924),
 (7684, 7948),
 (7684, 7972),
 (7684, 7996),
 (7684, 8020),
 (7684, 8044),
 (7684, 8068),
 (7684, 8092),
 (7684, 8116),
 (7684, 8140),
 (7684, 8164),
 (7684, 8188),
 (7684, 8212),
 (7684, 8236),
 (7684, 8260),
 (7684, 8284),
 (7684, 8308),
 (7684, 8332),
 (7684, 8356),
 (7684, 8380),
 (7684, 8404),
 (7684, 8428),
 (7684, 8452),
 (7684, 8476),
 (7684, 8500),
 (7684, 8524),
 (7684, 8548),
 (7684, 8572),
 (7684, 8596),
 (7684, 8620),
 (7684, 8644),
 (7684, 8668),
 (7684, 8692),
 (7684, 8716),
 (7684, 8740),
 (7684, 8764),
 ...]
In [ ]:

In [16]:
comb()
Out[16]:
<function scipy.special._basic.comb(N, k, exact=False, repetition=False)>
In [ ]:

In [13]:
plt.figure()

# plt.plot(rs, knncdf.peaked_cdf(cdf0[0, :]))
# plt.plot(rs, knncdf.peaked_cdf(cdf1[0, :]))
# plt.plot(rs, knncdf.peaked_cdf(joint_cdf[0, :]))
for i in range(8):
    plt.plot(rs, corr[i, :])


# plt.yscale("log")
# plt.xscale("log")
plt.axvline(2.65 / 0.705, c="red", ls="--")

plt.show()
No description has been provided for this image
In [ ]:

In [ ]:
dist1, dist2 = knncdf.joint(knn1, knn2, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,
             nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))
In [ ]:

In [ ]:

In [ ]:

In [ ]:
plt.figure()
plt.plot(rs, knncdf.peaked_cdf(cdf[0, :]))

plt.yscale("log" )
plt.xscale("log")
plt.show()
In [ ]:
mask
In [ ]:

In [ ]:
dist
In [ ]:

In [ ]:

In [ ]:
m1 = (rs > 1) & (rs < 35)

fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)
fig.subplots_adjust(wspace=0)
for k in range(3):
    for n in range(len(ics)):
        m = m1 & (cdfs[n, k, :] > 1e-3)
        axs[k].plot(rs[m], cdfs[n, k, m], c="black", lw=0.05)

    axs[k].set_xscale("log")
    axs[k].set_yscale("log")
    axs[k].set_title(r"$k = {}$".format(k))
    axs[k].set_xlabel(r"$r~\left[\mathrm{Mpc}\right]$")

axs[0].set_ylabel(r"Peaked CDF")

plt.tight_layout(w_pad=0)
fig.savefig("../plots/peaked_cdf.png", dpi=450)
fig.show()
In [ ]:
m = (rs > 0.5) & (rs < 35)

fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)
fig.subplots_adjust(wspace=0)
for k in range(3):
    mu = np.nanmean(cdfs[:, k, :], axis=0)

    for n in range(len(ics)):
        axs[k].plot(rs[m], (cdfs[n, k, :] / mu)[m], c="black", lw=0.1)

    axs[k].set_ylim(0.5, 1.5)
    axs[k].axhline(1, ls="--", c="red", zorder=0)
    axs[k].axvline(2.65 / 0.705, ls="--", c="red", zorder=0)
    axs[k].set_xscale("log")
    axs[k].set_xlabel(r"$r~\left[\mathrm{Mpc}\right]$")
    axs[k].set_title(r"$k = {}$".format(k))
    
axs[0].set_ylabel(r"Relative peaked CDF")
plt.tight_layout(w_pad=0)
fig.savefig("../plots/peaked_cdf_ratios.png", dpi=450)
fig.show()
In [ ]:
plt.figure()
k = 2
mu = np.nanmean(cdfs[:, k, :], axis=0)
# plt.plot(rs, mu, c="black")
for i in range(len(ics)):
    plt.plot(rs, cdfs[i, k, :] / mu)


plt.ylim(0.75, 1.25)
plt.axhline(1, ls="--", c="black")
plt.xscale("log")
# plt.yscale("log")
plt.show()
In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:
x.shape
In [ ]:

In [ ]:

In [ ]:
dist0, __ = knn0.kneighbors(X, 3)
distx, __ = knnx.kneighbors(X, 3)
In [ ]:
x0, y0 = knncdf.peaked_cdf_from_samples(dist0[:, 0], 0.5, 20, neval=10000)
xx, yx = knncdf.peaked_cdf_from_samples(distx[:, 0], 0.5, 20, neval=10000)
In [ ]:
distx[:, 0].min()
In [ ]:
plt.figure()
plt.plot(x0, y0)
plt.plot(xx, yx)

plt.yscale("log")
plt.xscale("log")
plt.show()
In [ ]:

In [ ]:
plt.figure()

for i in range(3):
    plt.plot(*knncdf.cdf_from_samples(dist0[:, i], 1, 25))
    plt.plot(*knncdf.cdf_from_samples(distx[:, i], 1, 25))

# plt.xlim(0.5, 25)

plt.yscale("log")
plt.xscale("log")
plt.xlabel(r"$r~\left[\mathrm{Mpc}\right]$")



plt.show()
In [ ]:

In [ ]:
x = dist[:, 0]
q = np.linspace(0, 100, int(x.size / 5))

p = np.percentile(x, q)
In [ ]:
y = np.sort(x)

yy = np.arange(y.size) / y.size
In [ ]:
plt.figure()
plt.plot(p, q / 100)

plt.plot(y, yy)

# plt.yscale("log")
plt.show()
In [ ]:

In [ ]:
plt.figure()
plt.hist(dist[:, 0], bins="auto", histtype="step")
plt.hist(dist[:, 1], bins="auto", histtype="step")
plt.hist(dist[:, 2], bins="auto", histtype="step")

plt.show()
In [ ]:

In [ ]:

In [ ]:
plt.figure()
plt.hist(cat0["dec"], bins="auto")

plt.show()
In [ ]:
gen = np.random.default_rng(22)
In [ ]:
gen.normal()
In [ ]:

In [ ]:
theta = np.linspace( t, np.pi, 100)

plt.figure()
plt.plot(theta, np.sin(theta))
plt.show()
In [ ]:

In [ ]:

In [ ]:
X = np.array([-3.9514747, -0.6966991,  2.97158]).reshape(1, -1)

X
In [ ]:
dist, indxs = knn0.kneighbors(X, n_neighbors=1)

dist, indxs
In [ ]:
cat0.positions[indxs]
In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]: