csiborgtools/csiborgtools/field/interp.py
Richard Stiskalek 9e4b34f579
Overlap fixing and more (#107)
* Update README

* Update density field reader

* Update name of SDSSxALFAFA

* Fix quick bug

* Add little fixes

* Update README

* Put back fit_init

* Add paths to initial snapshots

* Add export

* Remove some choices

* Edit README

* Add Jens' comments

* Organize imports

* Rename snapshot

* Add additional print statement

* Add paths to initial snapshots

* Add masses to the initial files

* Add normalization

* Edit README

* Update README

* Fix bug in CSiBORG1 so that does not read fof_00001

* Edit README

* Edit README

* Overwrite comments

* Add paths to init lag

* Fix Quijote path

* Add lagpatch

* Edit submits

* Update README

* Fix numpy int problem

* Update README

* Add a flag to keep the snapshots open when fitting

* Add a flag to keep snapshots open

* Comment out some path issue

* Keep snapshots open

* Access directly snasphot

* Add lagpatch for CSiBORG2

* Add treatment of x-z coordinates flipping

* Add radial velocity field loader

* Update README

* Add lagpatch to Quijote

* Fix typo

* Add setter

* Fix typo

* Update README

* Add output halo cat as ASCII

* Add import

* Add halo plot

* Update README

* Add evaluating field at radial distanfe

* Add field shell evaluation

* Add enclosed mass computation

* Add BORG2 import

* Add BORG boxsize

* Add BORG paths

* Edit run

* Add BORG2 overdensity field

* Add bulk flow clauclation

* Update README

* Add new plots

* Add nbs

* Edit paper

* Update plotting

* Fix overlap paths to contain simname

* Add normalization of positions

* Add default paths to CSiBORG1

* Add overlap path simname

* Fix little things

* Add CSiBORG2 catalogue

* Update README

* Add import

* Add TNG density field constructor

* Add TNG density

* Add draft of calculating BORG ACL

* Fix bug

* Add ACL of enclosed density

* Add nmean acl

* Add galaxy bias calculation

* Add BORG acl notebook

* Add enclosed mass calculation

* Add TNG300-1 dir

* Add TNG300 and BORG1 dir

* Update nb
2024-01-30 16:14:07 +00:00

380 lines
13 KiB
Python

# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Tools for interpolating 3D fields at arbitrary positions.
"""
import MAS_library as MASL
import numpy
import smoothing_library as SL
from numba import jit
from tqdm import tqdm, trange
from ..utils import periodic_wrap_grid, radec_to_cartesian
from .utils import divide_nonzero, force_single_precision, nside2radec
###############################################################################
# Cartesian interpolation #
###############################################################################
def evaluate_cartesian(*fields, pos, smooth_scales=None, verbose=False):
"""
Evaluate a scalar field(s) at Cartesian coordinates `pos`.
Parameters
----------
field : (list of) 3-dimensional array of shape `(grid, grid, grid)`
Fields to be interpolated.
pos : 2-dimensional array of shape `(n_samples, 3)`
Query positions in box units.
smooth_scales : (list of) float, optional
Smoothing scales in box units. If `None`, no smoothing is performed.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
(list of) 1-dimensional array of shape `(n_samples, len(smooth_scales))`
"""
pos = force_single_precision(pos)
if isinstance(smooth_scales, (int, float)):
smooth_scales = [smooth_scales]
if smooth_scales is None:
shape = (pos.shape[0],)
else:
shape = (pos.shape[0], len(smooth_scales))
interp_fields = [numpy.full(shape, numpy.nan, dtype=numpy.float32)
for __ in range(len(fields))]
for i, field in enumerate(fields):
if smooth_scales is None:
MASL.CIC_interp(field, 1., pos, interp_fields[i])
else:
desc = f"Smoothing and interpolating field {i + 1}/{len(fields)}"
iterator = tqdm(smooth_scales, desc=desc, disable=not verbose)
for j, scale in enumerate(iterator):
if not scale > 0:
fsmooth = numpy.copy(field)
else:
fsmooth = smoothen_field(field, scale, 1., make_copy=True)
MASL.CIC_interp(fsmooth, 1., pos, interp_fields[i][:, j])
if len(fields) == 1:
return interp_fields[0]
return interp_fields
def observer_peculiar_velocity(velocity_field, smooth_scales=None,
observer=None, verbose=True):
"""
Calculate the peculiar velocity in the centre of the box.
Parameters
----------
velocity_field : 4-dimensional array of shape `(3, grid, grid, grid)`
Velocity field in `km / s`.
smooth_scales : (list of) float, optional
Smoothing scales in box units. If `None`, no smoothing is performed.
observer : 1-dimensional array of shape `(3,)`, optional
Observer position in box units. If `None`, the observer is assumed to
be in the centre of the box.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
vpec : 1-dimensional array of shape `(3,)` or `(len(smooth_scales), 3)`
"""
if observer is None:
pos = numpy.asanyarray([0.5, 0.5, 0.5]).reshape(1, 3)
else:
pos = numpy.asanyarray(observer).reshape(1, 3)
vx, vy, vz = evaluate_cartesian(
*velocity_field, pos=pos, smooth_scales=smooth_scales, verbose=verbose)
# Reshape since we evaluated only one point
vx = vx.reshape(-1, )
vy = vy.reshape(-1, )
vz = vz.reshape(-1, )
if smooth_scales is None:
return numpy.array([vx[0], vy[0], vz[0]])
return numpy.vstack([vx, vy, vz]).T
###############################################################################
# Sky maps #
###############################################################################
def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False):
"""
Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions
[0, 360) deg and declinations [-90, 90] deg.
Parameters
----------
fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
Field to be interpolated.
pos : 2-dimensional array of shape `(n_samples, 3)`
Query spherical coordinates.
mpc2box : float
Conversion factor to multiply the radial distance by to get box units.
smooth_scales : (list of) float, optional
Smoothing scales in `Mpc / h`. If `None`, no smoothing is performed.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
(list of) 1-dimensional array of shape `(n_samples, len(smooth_scales))`
"""
# Make a copy of the positions to avoid modifying the input.
pos = numpy.copy(pos)
pos = force_single_precision(pos)
pos[:, 0] *= mpc2box
cart_pos = radec_to_cartesian(pos) + 0.5
if smooth_scales is not None:
if isinstance(smooth_scales, (int, float)):
smooth_scales = [smooth_scales]
if isinstance(smooth_scales, list):
smooth_scales = numpy.array(smooth_scales, dtype=numpy.float32)
smooth_scales *= mpc2box
return evaluate_cartesian(*fields, pos=cart_pos,
smooth_scales=smooth_scales, verbose=verbose)
def make_sky(field, angpos, dist, boxsize, verbose=True):
r"""
Make a sky map of a scalar field. The observer is in the centre of the
box the field is evaluated along directions `angpos` (RA [0, 360) deg,
dec [-90, 90] deg). Along each direction, the field is evaluated distances
`dist` (`Mpc / h`) and summed. Uses CIC interpolation.
Parameters
----------
field : 3-dimensional array of shape `(grid, grid, grid)`
Field to be interpolated
angpos : 2-dimensional arrays of shape `(ndir, 2)`
Directions to evaluate the field.
dist : 1-dimensional array
Uniformly spaced radial distances to evaluate the field in `Mpc / h`.
boxsize : float
Box size in `Mpc / h`.
verbose : bool, optional
Verbosity flag.
Returns
-------
interp_field : 1-dimensional array of shape `(n_pos, )`.
"""
dx = dist[1] - dist[0]
assert numpy.allclose(dist[1:] - dist[:-1], dx)
assert angpos.ndim == 2 and dist.ndim == 1
# We loop over the angular directions, at each step evaluating a vector
# of distances. We pre-allocate arrays for speed.
dir_loop = numpy.full((dist.size, 3), numpy.nan, dtype=numpy.float32)
ndir = angpos.shape[0]
out = numpy.full(ndir, numpy.nan, dtype=numpy.float32)
for i in trange(ndir) if verbose else range(ndir):
dir_loop[:, 0] = dist
dir_loop[:, 1] = angpos[i, 0]
dir_loop[:, 2] = angpos[i, 1]
out[i] = numpy.sum(
dist**2 * evaluate_sky(field, pos=dir_loop, mpc2box=1 / boxsize))
# Assuming the field is in h^2 Msun / kpc**3, we need to convert Mpc / h
# to kpc / h and multiply by the pixel area.
out *= dx * 1e9 * 4 * numpy.pi / len(angpos)
return out
###############################################################################
# Average field at a radial distance #
###############################################################################
def field_at_distance(field, distance, boxsize, smooth_scales=None, nside=128,
verbose=True):
"""
Evaluate a scalar field at uniformly spaced angular coordinates at a
given distance from the observer
Parameters
----------
field : 3-dimensional array of shape `(grid, grid, grid)`
Field to be interpolated.
distance : float
Distance from the observer in `Mpc / h`.
boxsize : float
Box size in `Mpc / h`.
smooth_scales : (list of) float, optional
Smoothing scales in `Mpc / h`. If `None`, no smoothing is performed.
nside : int, optional
HEALPix nside. Used to generate the uniformly spaced angular
coordinates. Recommended to be >> 1.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
vals : n-dimensional array of shape `(npix, len(smooth_scales))`
"""
# Get positions of HEALPix pixels on the sky and then convert those to
# box Cartesian coordinates. We take HEALPix pixels because they are
# uniformly distributed on the sky.
angpos = nside2radec(nside)
X = numpy.hstack([numpy.ones(len(angpos)).reshape(-1, 1) * distance,
angpos])
X = radec_to_cartesian(X) / boxsize + 0.5
return evaluate_cartesian(field, pos=X, smooth_scales=smooth_scales,
verbose=verbose)
###############################################################################
# Real-to-redshift space field dragging #
###############################################################################
@jit(nopython=True)
def make_gridpos(grid_size):
"""Make a regular grid of positions and distances from the center."""
grid_pos = numpy.full((grid_size**3, 3), numpy.nan, dtype=numpy.float32)
grid_dist = numpy.full(grid_size**3, numpy.nan, dtype=numpy.float32)
n = 0
for i in range(grid_size):
px = (i - 0.5 * (grid_size - 1)) / grid_size
px2 = px**2
for j in range(grid_size):
py = (j - 0.5 * (grid_size - 1)) / grid_size
py2 = py**2
for k in range(grid_size):
pz = (k - 0.5 * (grid_size - 1)) / grid_size
pz2 = pz**2
grid_pos[n, 0] = px
grid_pos[n, 1] = py
grid_pos[n, 2] = pz
grid_dist[n] = (px2 + py2 + pz2)**0.5
n += 1
return grid_pos, grid_dist
def field2rsp(field, radvel_field, box, MAS, init_value=0.):
"""
Forward model a real space scalar field to redshift space.
Parameters
----------
field : 3-dimensional array of shape `(grid, grid, grid)`
Real space field to be evolved to redshift space.
radvel_field : 3-dimensional array of shape `(grid, grid, grid)`
Radial velocity field in `km / s`. Expected to account for the observer
velocity.
box : :py:class:`csiborgtools.read.CSiBORG1Box`
The simulation box information and transformations.
MAS : str
Mass assignment. Must be one of `NGP`, `CIC`, `TSC` or `PCS`.
init_value : float, optional
Initial value of the RSP field on the grid.
Returns
-------
3-dimensional array of shape `(grid, grid, grid)`
"""
grid = field.shape[0]
H0_inv = 1. / 100 / box.box2mpc(1.)
# Calculate the regular grid positions and distances from the center.
grid_pos, grid_dist = make_gridpos(grid)
grid_dist = grid_dist.reshape(-1, 1)
# Move the grid positions to redshift space.
grid_pos *= (1 + H0_inv * radvel_field.reshape(-1, 1) / grid_dist)
grid_pos += 0.5
grid_pos = periodic_wrap_grid(grid_pos)
rsp_field = numpy.full(field.shape, init_value, dtype=numpy.float32)
cell_counts = numpy.zeros(rsp_field.shape, dtype=numpy.float32)
# Interpolate the field to the grid positions.
MASL.MA(grid_pos, rsp_field, 1., MAS, W=field.reshape(-1,))
MASL.MA(grid_pos, cell_counts, 1., MAS)
divide_nonzero(rsp_field, cell_counts)
return rsp_field
###############################################################################
# Supplementary function #
###############################################################################
@jit(nopython=True)
def fill_outside(field, fill_value, rmax, boxsize):
"""
Fill cells outside of a sphere of radius `rmax` around the box centre with
`fill_value`.
"""
imax, jmax, kmax = field.shape
assert imax == jmax == kmax
N = imax
# Squared radial distance from the center of the box in box units.
rmax_box2 = (N * rmax / boxsize)**2
for i in range(N):
idist2 = (i - 0.5 * (N - 1))**2
for j in range(N):
jdist2 = (j - 0.5 * (N - 1))**2
for k in range(N):
kdist2 = (k - 0.5 * (N - 1))**2
if idist2 + jdist2 + kdist2 > rmax_box2:
field[i, j, k] = fill_value
return field
def smoothen_field(field, smooth_scale, boxsize, threads=1, make_copy=False):
"""
Smooth a field with a Gaussian filter.
"""
W_k = SL.FT_filter(boxsize, smooth_scale, field.shape[0], "Gaussian",
threads)
if make_copy:
field = numpy.copy(field)
return SL.field_smoothing(field, W_k, threads)