CSiBORG analysis tools.
Go to file
Richard Stiskalek 9e4b34f579
Overlap fixing and more (#107)
* Update README

* Update density field reader

* Update name of SDSSxALFAFA

* Fix quick bug

* Add little fixes

* Update README

* Put back fit_init

* Add paths to initial snapshots

* Add export

* Remove some choices

* Edit README

* Add Jens' comments

* Organize imports

* Rename snapshot

* Add additional print statement

* Add paths to initial snapshots

* Add masses to the initial files

* Add normalization

* Edit README

* Update README

* Fix bug in CSiBORG1 so that does not read fof_00001

* Edit README

* Edit README

* Overwrite comments

* Add paths to init lag

* Fix Quijote path

* Add lagpatch

* Edit submits

* Update README

* Fix numpy int problem

* Update README

* Add a flag to keep the snapshots open when fitting

* Add a flag to keep snapshots open

* Comment out some path issue

* Keep snapshots open

* Access directly snasphot

* Add lagpatch for CSiBORG2

* Add treatment of x-z coordinates flipping

* Add radial velocity field loader

* Update README

* Add lagpatch to Quijote

* Fix typo

* Add setter

* Fix typo

* Update README

* Add output halo cat as ASCII

* Add import

* Add halo plot

* Update README

* Add evaluating field at radial distanfe

* Add field shell evaluation

* Add enclosed mass computation

* Add BORG2 import

* Add BORG boxsize

* Add BORG paths

* Edit run

* Add BORG2 overdensity field

* Add bulk flow clauclation

* Update README

* Add new plots

* Add nbs

* Edit paper

* Update plotting

* Fix overlap paths to contain simname

* Add normalization of positions

* Add default paths to CSiBORG1

* Add overlap path simname

* Fix little things

* Add CSiBORG2 catalogue

* Update README

* Add import

* Add TNG density field constructor

* Add TNG density

* Add draft of calculating BORG ACL

* Fix bug

* Add ACL of enclosed density

* Add nmean acl

* Add galaxy bias calculation

* Add BORG acl notebook

* Add enclosed mass calculation

* Add TNG300-1 dir

* Add TNG300 and BORG1 dir

* Update nb
2024-01-30 16:14:07 +00:00
csiborgtools Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
data Remove files that are not meant to be tracked.. 2023-12-14 00:41:28 +00:00
notebooks Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
old Add density field plot and start preparing CSiBORG2 (#94) 2023-12-13 16:08:25 +00:00
scripts Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
scripts_independent Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
scripts_plots Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
.flake8 Clean density calculation (#97) 2023-12-18 18:09:08 +01:00
.gitattributes add .gitattrib 2022-10-11 16:43:18 +01:00
.gitignore Sorting of CSiBORG2 initial snapshot (#99) 2023-12-20 11:00:26 +01:00
LICENSE Create LICENSE 2023-04-27 10:38:59 +01:00
README.md Overlap fixing and more (#107) 2024-01-30 16:14:07 +00:00
setup.py Add pynbody and other support (#92) 2023-12-07 14:23:32 +00:00

CSiBORG Tools

Tools for analysing the suite of Constrained Simulations in BORG (CSiBORG) simulations. The interface is designed to work with the following suites of simulations: CSiBORG1 (dark matter-only RAMSES), CSiBORG2 (dark matter-only Gadget4), Quijote (dark-matter only Gadget2), however with little effort it can support other simulations as well.

Ongoing projects

Data to calculate

  • Process all CSiBORG1 snapshots (running).
  • Calculate halo properties for CSiBORG1
  • Calculate initial properties for CSiBORG1
  • Calculate halo properties for CSiBORG2
  • Calculate initial properties for CSiBORG2
  • Process all Quijote simulations.
  • Calculate halo properties for Quijote
  • Calculate initial properties for Quijote

General

  • Add new halo properties to the catalogues.
  • Add initial halo properties to the catalogues.
  • Add a new flag for flipping x- and z-coordinates fro catalogues, snapshots and field readers.
  • Add radial velocity field loader.

Consistent halo reconstruction

  • Make a sketch of the overlap definition and add it to the paper.
  • Re-calculate the overlaps for CSiBORG1, Quijote and CSiBORG2
  • Fix the script to calculate the initial lagrangian positions etc.

Enviromental dependence of galaxy properties

  • Prepare the CSiBORG one particle files for SPH.
  • Transfer, calculate the SPH density field for CSiBORG1 and transfer back.
  • Check that the velocity-field flipping of x and z coordinates is correct.
  • Evaluate and share the density field for SDSS and SDSSxALFALFA for both CSiBORG2 and random fields.
  • Check and verify the density field of galaxy colours (cannot do this now! Glamdring is super slow.)
  • Calculate the radial velocity field for random realizations (submitted)
  • Send Catherine concatenated data.
  • Start analyzing DiSPERSE results.

Mass-assembly of massive clusters

  • Make a list of nearby most-massive clusters.
  • Write code to identify a counterpart of such clusters.
  • Write code to make a plot of mass-assembly of all clusters within a certain mass range from the random simulations.
  • Write code to compare mass-assembly of a specific cluster with respect to random ones.

Effect of small-scale noise

  • Study how the small-scale noise variation affects the overlap measure, halo concentration and spin.
  • Add uncertainty on the halo concentration.

Gravitational-wave and large-scale structure

  • Validate the velocity field results agains Supranta data sets.
  • Write code to estimate the enclosed mass and bulk flow.
  • Write code to estimate the average radial velocity in a spherical shell.
  • Write code to calculate the power spectrum of velocities.
  • Estimate the amplitude of the velocity field in radial shells around the observer, estimate analogous results for random simulations, and see if they agree within cosmic variance.
  • Calculate power spectra of velocities and maybe velocity dispersion.
  • Make the velocity field data available.

CSiBORG meets X-ray

  • Make available one example snapshot from the simulation. Mention the issue with x- and z-coordinates.
  • Answer Johan and make a comparison to the Planck clusters.

CSiBORG advertising

  • Decide on the webpage design and what to store there.
  • Write a short letter describing the simulations.

Calculated data

Enclosed mass & bulk velocity

  • CSiBORG2_main, CSiBORG2_varysmall, CSiBORG2_arandom

SPH-density & velocity field

  • CSiBORG2_main, CSiBORG2_random, CSiBORG2_varysmall
  • Evaluated for SDSS and SDSSxALFALFA in: CSiBORG2_main, CSiBORG2_random

Radial velocity field

  • *CSiBORG2_main, CSiBORG2_random