csiborgtools/notebooks/knn.ipynb
Richard Stiskalek 826ab61d2d
Add p(V | k) (#39)
* add p(V | k)

* Update nb
2023-04-05 14:47:30 +01:00

2341 lines
258 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "5a38ed25",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-05T10:08:35.127670Z",
"start_time": "2023-04-05T10:08:29.875068Z"
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"not found\n"
]
}
],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.neighbors import NearestNeighbors\n",
"import joblib\n",
"from glob import glob\n",
"from tqdm import tqdm\n",
"try:\n",
" import csiborgtools\n",
"except ModuleNotFoundError:\n",
" print(\"not found\")\n",
" import sys\n",
" sys.path.append(\"../\")\n",
" import csiborgtools\n",
"\n",
"\n",
"%matplotlib notebook\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 135,
"id": "3bbf38d6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-05T13:41:02.225736Z",
"start_time": "2023-04-05T13:41:00.875529Z"
}
},
"outputs": [],
"source": [
"knnreader = csiborgtools.read.kNNCDFReader()"
]
},
{
"cell_type": "code",
"execution_count": 142,
"id": "9a79dde6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-05T13:42:26.370674Z",
"start_time": "2023-04-05T13:42:22.862756Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 101/101 [00:01<00:00, 76.37it/s]\n"
]
}
],
"source": [
"files = glob(\"/mnt/extraspace/rstiskalek/csiborg/knn/auto/*\")\n",
"\n",
"ks = [0, 1, 2, 3, 4, 5, 6, 7]\n",
"rs, cdf, thresholds = knnreader.read(files, ks, rmin=0.01, rmax=100)"
]
},
{
"cell_type": "code",
"execution_count": 143,
"id": "88de6882",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-05T13:42:26.943147Z",
"start_time": "2023-04-05T13:42:26.372382Z"
}
},
"outputs": [],
"source": [
"pk = knnreader.prob_kvolume(cdf, rs, True)"
]
},
{
"cell_type": "code",
"execution_count": 147,
"id": "dbb11ba2",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-05T13:43:45.754506Z",
"start_time": "2023-04-05T13:43:38.953908Z"
}
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_device_pixel_ratio', {\n",
" device_pixel_ratio: fig.ratio,\n",
" });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'dblclick',\n",
" on_mouse_event_closure('dblclick')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" var img = evt.data;\n",
" if (img.type !== 'image/png') {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" img.type = 'image/png';\n",
" }\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" img\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * https://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.key === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.key;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.key !== 'Control') {\n",
" value += 'ctrl+';\n",
" }\n",
" else if (event.altKey && event.key !== 'Alt') {\n",
" value += 'alt+';\n",
" }\n",
" else if (event.shiftKey && event.key !== 'Shift') {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k' + event.key;\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.binaryType = comm.kernel.ws.binaryType;\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" function updateReadyState(_event) {\n",
" if (comm.kernel.ws) {\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" } else {\n",
" ws.readyState = 3; // Closed state.\n",
" }\n",
" }\n",
" comm.kernel.ws.addEventListener('open', updateReadyState);\n",
" comm.kernel.ws.addEventListener('close', updateReadyState);\n",
" comm.kernel.ws.addEventListener('error', updateReadyState);\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" var data = msg['content']['data'];\n",
" if (data['blob'] !== undefined) {\n",
" data = {\n",
" data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
" };\n",
" }\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(data);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
"\n",
"plt.figure()\n",
"n = 1\n",
"for k in range(7):\n",
" plt.plot(rs, np.mean(pk[:, n, k, :], axis=0), c=cols[k], label=r\"$k = {}$\".format(k))\n",
" for i in range(101):\n",
" plt.plot(rs, pk[i, n, k, :], c=cols[k], lw=0.05)\n",
"\n",
"plt.legend(frameon=False)\n",
"plt.xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
"plt.ylabel(r\"$P\\left(k | V = 4 \\pi r^3 / 3\\right)$\")\n",
"# plt.savefig(\"../plots/test.png\", dpi=450)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6999c90d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "20bbeb54",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-03T17:10:30.078450Z",
"start_time": "2023-04-03T17:10:29.171089Z"
}
},
"outputs": [],
"source": [
"n = 2\n",
"k = 1\n",
"\n",
"x = cdf[:, n, k - 1, :] - cdf[:, n, k, :]\n",
"\n",
"plt.figure()\n",
"for i in range(101):\n",
" plt.plot(rs, x[i, :])\n",
"\n",
"plt.xscale(\"log\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86091fcc",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-03T17:13:07.495144Z",
"start_time": "2023-04-03T17:13:06.635811Z"
}
},
"outputs": [],
"source": [
"files = knnreader.cross_files(7444, \"/mnt/extraspace/rstiskalek/csiborg/knn/cross/\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0917bd5",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-03T17:13:11.011391Z",
"start_time": "2023-04-03T17:13:07.496523Z"
}
},
"outputs": [],
"source": [
"ks = [0, 1, 2, 3, 4, 5, 6, 7]\n",
"rs, cross, threshold = knnreader.read(files, ks, rmin=0.5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "beba86db",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-03T17:13:11.152680Z",
"start_time": "2023-04-03T17:13:11.013209Z"
}
},
"outputs": [],
"source": [
"n = 0\n",
"k = 1\n",
"\n",
"plt.figure()\n",
"for i in range(100):\n",
" plt.plot(rs, cross[i, n, k - 1, :] - cross[i, n, k, :])\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.axvline(2.65 / 0.705)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adf96c3b",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-03T14:25:45.275844Z",
"start_time": "2023-04-03T14:25:44.855207Z"
}
},
"outputs": [],
"source": [
"\"/mnt/extraspace/hdesmond/ramses_out_7444/output_00950/clump_00950.dat\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8179c3e0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "f803105a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "55544ddd",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c7add55",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "75a5e6f7",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b6d813b",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "19115f4c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "4218b673",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:27:07.868868Z",
"start_time": "2023-04-01T08:27:04.088778Z"
}
},
"outputs": [],
"source": [
"cat1 = csiborgtools.read.HaloCatalogue(7444, min_mass=1e13, max_dist=155 / 0.705)\n",
"cat2 = csiborgtools.read.HaloCatalogue(7468, min_mass=1e13, max_dist=155 / 0.705)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ff7a1b6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:27:07.923418Z",
"start_time": "2023-04-01T08:27:07.870519Z"
}
},
"outputs": [],
"source": [
"knncdf = csiborgtools.match.kNN_CDF()\n",
"\n",
"\n",
"knn1 = NearestNeighbors()\n",
"knn1.fit(cat1.positions)\n",
"\n",
"knn2 = NearestNeighbors()\n",
"knn2.fit(cat2.positions)\n",
"\n",
"# rs, cdf = knncdf(knn, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
"# nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88a31951",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:46:56.273595Z",
"start_time": "2023-04-01T08:46:56.088408Z"
}
},
"outputs": [],
"source": [
"!ls /mnt/extraspace/rstiskalek/csiborg/knn/cross/knncdf_7444_7468.p"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7c2d465",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T10:05:26.294670Z",
"start_time": "2023-04-01T10:05:25.954223Z"
}
},
"outputs": [],
"source": [
"from glob import glob"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6083fcbe",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T10:05:52.758709Z",
"start_time": "2023-04-01T10:05:52.705627Z"
}
},
"outputs": [],
"source": [
"files = glob(\"/mnt/extraspace/rstiskalek/csiborg/knn/cross/*\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6d6b9d57",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T10:06:00.023427Z",
"start_time": "2023-04-01T10:05:59.645149Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "980f74df",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T10:12:49.924557Z",
"start_time": "2023-04-01T10:12:49.714545Z"
}
},
"outputs": [],
"source": [
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
"\n",
"plt.figure()\n",
"for file in files:\n",
" d = joblib.load(file)\n",
" mask = d[\"rs\"] > 0.1\n",
" plt.plot(d[\"rs\"][mask], d[\"corr_0\"][0, mask], c=cols[0], lw=0.4)\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.axvline(2.65 / 0.705, lw=0.8, c=\"red\", ls=\"--\")\n",
"# plt.yscale(\"log\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "997e8f91",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "25936419",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:51:11.896378Z",
"start_time": "2023-04-01T08:51:11.865150Z"
}
},
"outputs": [],
"source": [
"5500 / comb(5, 3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "043a93ff",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:50:37.181588Z",
"start_time": "2023-04-01T08:50:36.718438Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.plot(d[\"rs\"], d[\"corr_0\"][1, :])\n",
"plt.plot(d[\"rs\"], d[\"corr_1\"][1, :])\n",
"plt.plot(d[\"rs\"], d[\"corr_2\"][1, :])\n",
"\n",
"# plt.yscale(\"log\")\n",
"# plt.xscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "279d8e58",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d08b0dc3",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:27:19.271922Z",
"start_time": "2023-04-01T08:27:07.925222Z"
}
},
"outputs": [],
"source": [
"# rs, cdf = knncdf(knn1, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
"# nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))\n",
"\n",
"rs, cdf0, cdf1, joint_cdf = knncdf.joint(knn1, knn2, nneighbours=8, Rmax=155 / 0.705,\n",
" rmin=0.01, rmax=100, nsamples=int(1e6), neval=int(1e4),\n",
" random_state=42, batch_size=int(1e6))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0866fe23",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:27:19.436097Z",
"start_time": "2023-04-01T08:27:19.397998Z"
}
},
"outputs": [],
"source": [
"cdf0 = knncdf.clipped_cdf(cdf0)\n",
"cdf1 = knncdf.clipped_cdf(cdf1)\n",
"joint_cdf = knncdf.clipped_cdf(joint_cdf)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0649b7e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:27:59.413449Z",
"start_time": "2023-04-01T08:27:59.244281Z"
}
},
"outputs": [],
"source": [
"corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4d28785",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:33:12.811065Z",
"start_time": "2023-04-01T08:33:12.386639Z"
}
},
"outputs": [],
"source": [
"ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,\n",
" 7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,\n",
" 7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,\n",
" 8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,\n",
" 8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,\n",
" 8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,\n",
" 9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,\n",
" 9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,\n",
" 9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,\n",
" 9820, 9844]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaac3eff",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:34:00.873304Z",
"start_time": "2023-04-01T08:34:00.842613Z"
}
},
"outputs": [],
"source": [
"from scipy.special import comb\n",
"\n",
"from itertools import combinations\n",
"# for subset in itertools.combinations(stuff, L):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "042fe713",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:34:21.387439Z",
"start_time": "2023-04-01T08:34:21.325627Z"
}
},
"outputs": [],
"source": [
"list(combinations(ics, 2))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "762ec153",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c43f012",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:33:18.308219Z",
"start_time": "2023-04-01T08:33:18.275965Z"
}
},
"outputs": [],
"source": [
"comb()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaca64f3",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "9fb9e08e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T08:28:35.326570Z",
"start_time": "2023-04-01T08:28:35.158664Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"\n",
"# plt.plot(rs, knncdf.peaked_cdf(cdf0[0, :]))\n",
"# plt.plot(rs, knncdf.peaked_cdf(cdf1[0, :]))\n",
"# plt.plot(rs, knncdf.peaked_cdf(joint_cdf[0, :]))\n",
"for i in range(8):\n",
" plt.plot(rs, corr[i, :])\n",
"\n",
"\n",
"# plt.yscale(\"log\")\n",
"# plt.xscale(\"log\")\n",
"plt.axvline(2.65 / 0.705, c=\"red\", ls=\"--\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f295a0f9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d5f3d02",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T07:20:34.202874Z",
"start_time": "2023-04-01T07:20:28.353637Z"
}
},
"outputs": [],
"source": [
"dist1, dist2 = knncdf.joint(knn1, knn2, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
" nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a76c8124",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T07:20:41.074933Z",
"start_time": "2023-04-01T07:20:41.041448Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "127b91a8",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b9a8cf0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1825f00",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T06:01:29.388586Z",
"start_time": "2023-04-01T06:01:29.321025Z"
},
"scrolled": false
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.plot(rs, knncdf.peaked_cdf(cdf[0, :]))\n",
"\n",
"plt.yscale(\"log\" )\n",
"plt.xscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "289549a0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:55:20.690887Z",
"start_time": "2023-03-31T22:55:20.656550Z"
}
},
"outputs": [],
"source": [
"mask"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a8c5202",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:54:52.330633Z",
"start_time": "2023-03-31T22:54:52.299548Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "46f54897",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:54:25.138813Z",
"start_time": "2023-03-31T22:54:25.105044Z"
}
},
"outputs": [],
"source": [
"dist"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58806ab9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c59b3a19",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "e345945c",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T09:35:49.059172Z",
"start_time": "2023-03-31T09:35:42.817291Z"
}
},
"outputs": [],
"source": [
"m1 = (rs > 1) & (rs < 35)\n",
"\n",
"fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)\n",
"fig.subplots_adjust(wspace=0)\n",
"for k in range(3):\n",
" for n in range(len(ics)):\n",
" m = m1 & (cdfs[n, k, :] > 1e-3)\n",
" axs[k].plot(rs[m], cdfs[n, k, m], c=\"black\", lw=0.05)\n",
"\n",
" axs[k].set_xscale(\"log\")\n",
" axs[k].set_yscale(\"log\")\n",
" axs[k].set_title(r\"$k = {}$\".format(k))\n",
" axs[k].set_xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
"\n",
"axs[0].set_ylabel(r\"Peaked CDF\")\n",
"\n",
"plt.tight_layout(w_pad=0)\n",
"fig.savefig(\"../plots/peaked_cdf.png\", dpi=450)\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f8786c0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T09:50:10.103650Z",
"start_time": "2023-03-31T09:50:02.221741Z"
}
},
"outputs": [],
"source": [
"m = (rs > 0.5) & (rs < 35)\n",
"\n",
"fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)\n",
"fig.subplots_adjust(wspace=0)\n",
"for k in range(3):\n",
" mu = np.nanmean(cdfs[:, k, :], axis=0)\n",
"\n",
" for n in range(len(ics)):\n",
" axs[k].plot(rs[m], (cdfs[n, k, :] / mu)[m], c=\"black\", lw=0.1)\n",
"\n",
" axs[k].set_ylim(0.5, 1.5)\n",
" axs[k].axhline(1, ls=\"--\", c=\"red\", zorder=0)\n",
" axs[k].axvline(2.65 / 0.705, ls=\"--\", c=\"red\", zorder=0)\n",
" axs[k].set_xscale(\"log\")\n",
" axs[k].set_xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
" axs[k].set_title(r\"$k = {}$\".format(k))\n",
" \n",
"axs[0].set_ylabel(r\"Relative peaked CDF\")\n",
"plt.tight_layout(w_pad=0)\n",
"fig.savefig(\"../plots/peaked_cdf_ratios.png\", dpi=450)\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f64cec1",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T15:46:31.532259Z",
"start_time": "2023-03-30T15:46:30.977449Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"k = 2\n",
"mu = np.nanmean(cdfs[:, k, :], axis=0)\n",
"# plt.plot(rs, mu, c=\"black\")\n",
"for i in range(len(ics)):\n",
" plt.plot(rs, cdfs[i, k, :] / mu)\n",
"\n",
"\n",
"plt.ylim(0.75, 1.25)\n",
"plt.axhline(1, ls=\"--\", c=\"black\")\n",
"plt.xscale(\"log\")\n",
"# plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6784766",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "b416efb3",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "e650fe2c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "1311187d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "03e49a11",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T14:58:29.937514Z",
"start_time": "2023-03-30T14:58:29.530552Z"
}
},
"outputs": [],
"source": [
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24578cba",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0024bbf",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dc55410",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T14:41:24.290602Z",
"start_time": "2023-03-30T14:41:16.204679Z"
}
},
"outputs": [],
"source": [
"dist0, __ = knn0.kneighbors(X, 3)\n",
"distx, __ = knnx.kneighbors(X, 3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11508c3c",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T14:41:24.560538Z",
"start_time": "2023-03-30T14:41:24.292674Z"
}
},
"outputs": [],
"source": [
"x0, y0 = knncdf.peaked_cdf_from_samples(dist0[:, 0], 0.5, 20, neval=10000)\n",
"xx, yx = knncdf.peaked_cdf_from_samples(distx[:, 0], 0.5, 20, neval=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "404501ad",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T14:41:24.598933Z",
"start_time": "2023-03-30T14:41:24.562062Z"
}
},
"outputs": [],
"source": [
"distx[:, 0].min()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43e08969",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T14:46:10.262865Z",
"start_time": "2023-03-30T14:46:09.486658Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.plot(x0, y0)\n",
"plt.plot(xx, yx)\n",
"\n",
"plt.yscale(\"log\")\n",
"plt.xscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39547a75",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e160b38",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T13:02:02.033125Z",
"start_time": "2023-03-30T13:02:00.674878Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"\n",
"for i in range(3):\n",
" plt.plot(*knncdf.cdf_from_samples(dist0[:, i], 1, 25))\n",
" plt.plot(*knncdf.cdf_from_samples(distx[:, i], 1, 25))\n",
"\n",
"# plt.xlim(0.5, 25)\n",
"\n",
"plt.yscale(\"log\")\n",
"plt.xscale(\"log\")\n",
"plt.xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
"\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bfb65d8",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "4703d81c",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T12:13:35.958444Z",
"start_time": "2023-03-30T12:13:35.924241Z"
}
},
"outputs": [],
"source": [
"x = dist[:, 0]\n",
"q = np.linspace(0, 100, int(x.size / 5))\n",
"\n",
"p = np.percentile(x, q)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b054c6df",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T12:16:50.052225Z",
"start_time": "2023-03-30T12:16:50.020395Z"
}
},
"outputs": [],
"source": [
"y = np.sort(x)\n",
"\n",
"yy = np.arange(y.size) / y.size"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5445c964",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T12:16:53.599925Z",
"start_time": "2023-03-30T12:16:53.521266Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.plot(p, q / 100)\n",
"\n",
"plt.plot(y, yy)\n",
"\n",
"# plt.yscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87fe5874",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb0ad6b9",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T12:03:34.387625Z",
"start_time": "2023-03-30T12:03:34.290961Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.hist(dist[:, 0], bins=\"auto\", histtype=\"step\")\n",
"plt.hist(dist[:, 1], bins=\"auto\", histtype=\"step\")\n",
"plt.hist(dist[:, 2], bins=\"auto\", histtype=\"step\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2aba833",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f70f238",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "03bcb191",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:38:04.906150Z",
"start_time": "2023-03-30T11:38:04.758107Z"
}
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.hist(cat0[\"dec\"], bins=\"auto\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5ad4722",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:53:23.004853Z",
"start_time": "2023-03-30T11:53:22.971967Z"
}
},
"outputs": [],
"source": [
"gen = np.random.default_rng(22)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "785b530a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:53:23.330397Z",
"start_time": "2023-03-30T11:53:23.296612Z"
}
},
"outputs": [],
"source": [
"gen.normal()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3d3b5e6",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "464b606d",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:36:13.649124Z",
"start_time": "2023-03-30T11:36:12.995693Z"
}
},
"outputs": [],
"source": [
"theta = np.linspace( t, np.pi, 100)\n",
"\n",
"plt.figure()\n",
"plt.plot(theta, np.sin(theta))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c29049f5",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd2a3295",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "af9abf04",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:10:11.104389Z",
"start_time": "2023-03-30T11:10:11.070499Z"
}
},
"outputs": [],
"source": [
"X = np.array([-3.9514747, -0.6966991, 2.97158]).reshape(1, -1)\n",
"\n",
"X"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e181b3c3",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:32:17.840355Z",
"start_time": "2023-03-30T11:32:17.351883Z"
}
},
"outputs": [],
"source": [
"dist, indxs = knn0.kneighbors(X, n_neighbors=1)\n",
"\n",
"dist, indxs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d38fd960",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-30T11:10:18.182326Z",
"start_time": "2023-03-30T11:10:18.145629Z"
}
},
"outputs": [],
"source": [
"cat0.positions[indxs]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a16ddc2f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "bbbe8fb6",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "759a0149",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "312c96c9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "b097637b",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ced23cb",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "be26cbcc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv_galomatch",
"language": "python",
"name": "venv_galomatch"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
},
"vscode": {
"interpreter": {
"hash": "f29d02a8350410abc2a9fb79641689d10bf7ab64afc03ec87ca3cf6ed2daa499"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}