csiborgtools/notebooks/match_observation/harry_clusters.ipynb
Richard Stiskalek 779f2e76ac
Calculate upglade redshifts (#128)
* Update redshift reading

* Add helio to CMB redshift

* Update imports

* Update nb

* Run for Quijote

* Add script

* Update

* Update .gitignore

* Update imports

* Add Peery estimator

* Add bulk flow scripts

* Update typs

* Add comment

* Add blank space

* Update submission script

* Update description

* Add barriers

* Update nb

* Update nb

* Rename script

* Move to old

* Update imports

* Add nb

* Update script

* Fix catalogue key

* Update script

* Update submit

* Update comment

* Update .gitignore

* Update nb

* Update for stationary obsrevers

* Update submission

* Add nb

* Add better verbose control

* Update nb

* Update submit

* Update nb

* Add SN errors

* Add draft of the script

* Update verbosity flags

* Add submission script

* Debug script

* Quickfix

* Remove comment

* Update nb

* Update submission

* Update nb

* Processed UPGLADE
2024-06-20 14:33:00 +01:00

12 KiB

In [1]:
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
try:
    import csiborgtools
except ModuleNotFoundError:
    import sys
    sys.path.append("../")
    import csiborgtools
import utils
%load_ext autoreload
%autoreload 2

import joblib
from os.path import join
from glob import glob
In [2]:
Nsim = 9844
simpath = csiborgtools.io.get_sim_path(Nsim)
Nsnap = 1016

outfname = join(utils.dumpdir, "ramses_out_{}_{}.npy".format(str(Nsim).zfill(5), str(Nsnap).zfill(5)))

mmain = csiborgtools.io.read_mmain(Nsim, "/mnt/zfsusers/hdesmond/Mmain")

data = np.load(outfname)
data = csiborgtools.io.merge_mmain_to_clumps(data, mmain)

data = data[(data["npart"] > 100) & np.isfinite(data["m200"])]

CSiBORGBox = csiborgtools.units.CSiBORGBox(Nsnap, simpath)
In [22]:
R = np.sqrt((data["peak_x"] - 0.5)**2 + (data["peak_y"] - 0.5)**2 + (data["peak_z"] - 0.5)**2)
In [29]:
CSiBORGBox.box2kpc(0.21) * 1e-3
Out[29]:
201.86808958975962
In [30]:
plt.figure()
plt.hist(R, bins="auto")

plt.axvline(0.22, c="red")

plt.show()
No description has been provided for this image
In [34]:
mass = CSiBORGBox.box2solarmass(data["m200"])
Out[34]:
43830404417.54772
In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [3]:
# Nsplit = 0
# loaddir = join(utils.dumpdir, "temp")
# parts, part_clumps, clumps = csiborgtools.fits.load_split_particles(
#     Nsplit, loaddir, Nsim, Nsnap, remove_split=False)
In [43]:
# n = 584
# xs = csiborgtools.fits.pick_single_clump(n, parts, part_clumps, clumps)
# halo = csiborgtools.fits.Clump.from_arrays(*xs, rhoc=CSiBORGBox.box_rhoc)
# print(halo.Npart)
1306
In [ ]: