csiborgtools/notebooks/playground_matching.ipynb
Richard Stiskalek 5dd8c668fa
Gaussian smoothing of density fields (#33)
* Simplify smoothing support and looping over nonzero

* Simplify comments

* add now()

* add cat length

* add smoothed calculation

* add smoothing

* Add sorting

* Edit what is ignored

* Move notebooks

* Add nonsymmetric smoothed overlap

* Update NB

* Add support for reading in the smoothed overlap

* Switch to the true overlap definition

* Reader of the true overlap

* rem occups

* Import moved to a class

* Move definition

* Edit submission script

* Update to account for the new definition

* backup nb

* Switch back to properly initialising arrays

* Fix addition bug

* Update NB

* Fix little bug

* Update nb
2023-03-27 09:22:03 +01:00

101 KiB

In [2]:
import sys
import numpy as np
import matplotlib.pyplot as plt
import scienceplots
import astroquery
from tqdm import trange, tqdm

sys.path.append("../")
import csiborgtools

%matplotlib widget 
%load_ext autoreload
%autoreload 2
In [38]:
# # Norma
cluster = {"RA": (16 + 15 / 60 + 32.8 / 60**2) * 15,
           "DEC": -60 + 54 / 60 + 30 / 60**2,
           "DIST": 67.8}

Xclust = np.array([cluster["DIST"], cluster["RA"], cluster["DEC"]]).reshape(1, -1)
In [39]:
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(False)
In [29]:
Xclust = np.array([cluster["DIST"], cluster["RA"], cluster["DEC"]]).reshape(1, -1)
In [33]:
matches = np.full(len(nsims), np.nan)

for ii in trange(101):
    cat = csiborgtools.read.HaloCatalogue(nsims[ii], paths, minmass=('M', 1e13))
    dist, ind = cat.angular_neighbours(Xclust, ang_radius=5, rad_tolerance=10)
    dist = dist[0]
    ind = ind[0]

    if ind.size > 0:
        matches[ii] = np.max(cat['M'][ind])
100%|██████████| 101/101 [00:44<00:00,  2.25it/s]
In [37]:
x = np.log10(matches[~np.isnan(matches)])


plt.figure()
plt.hist(x, bins=10)
plt.show()
Figure
No description has been provided for this image
In [ ]: