csiborgtools/notebooks/flow/flow_mapping.ipynb
Richard Stiskalek ee222cd010
Fix overlap runs (#125)
* Update nb

* Update script

* Update script

* Rename

* Update script

* Update script

* Remove warning

* Ignore minors when extracting MAH

* Fix paths bug

* Move notebooks

* Move files

* Rename and delete things

* Rename file

* Move file

* Rename things

* Remove old print statement

* Add basic MAH plot

* Add random MAH path

* Output snapshot numbers

* Add MAH random extraction

* Fix redshift bug

* Edit script

* Add extracting random MAH

* Little updates

* Add CB2 redshift

* Add some caching

* Add diagnostic plots

* Add caching

* Minor updates

* Update nb

* Update notebook

* Update script

* Add Sorce randoms

* Add CB2 varysmall

* Update nb

* Update nb

* Update nb

* Use catalogue HMF

* Move definition of radec2galactic

* Update nb

* Update import

* Update import

* Add galatic coords to catalogues

* Update nb
2024-04-08 11:23:21 +02:00

46 KiB

Matching of haloes to clusters

In [144]:
import numpy as np
import matplotlib.pyplot as plt
from astropy.cosmology import FlatLambdaCDM

import pandas as pd

%load_ext autoreload
%autoreload 2
%matplotlib inline
The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

Load in the data

Harry: the exact routine may not work, I had to edit the raw .txt file a little

In [124]:
cosmo = FlatLambdaCDM(H0=100, Om0=0.307)

data0 = pd.read_csv("/mnt/users/rstiskalek/csiborgtools/data/top10_pwave_coords.txt", sep='\s+')
data = {}

data["id"] = np.array([int(x.split("_")[-1]) for x in data0["halo_ID"].values])
data["l"] = data0["l[deg]"].values
data["b"] = data0["b[deg]"].values
data["dist"] = cosmo.comoving_distance(data0["z"].values).value

print(data["dist"])
data0
[34.14606699  9.28692846 11.11279198 16.85641068  3.71636485 33.43032196
 24.65595192 29.91007806 40.31604335  9.346801  ]
Out[124]:
halo_ID KIND l[deg] b[deg] d[kpc] z Rdelta[kpc] rhos[Msol/kpc^3] rs[kpc] prof[keywrd] #1 #2 #3 FOVDiam[deg]
0 halo_647110 CLUSTER -47.66 29.96 -1 0.01142 4523.71 643822.01573 663.92743 kZHAO 1.0 3.0 1.0 37.74875
1 halo_10128802 CLUSTER -90.76 25.97 -1 0.00310 1975.98 611499.11522 294.56973 kZHAO 1.0 3.0 1.0 60.00762
2 halo_1338057 CLUSTER -35.42 -6.15 -1 0.00371 2738.50 593219.40743 413.73423 kZHAO 1.0 3.0 1.0 69.19885
3 halo_20419495 CLUSTER 87.42 88.09 -1 0.00563 3082.73 596355.51967 465.36921 kZHAO 1.0 3.0 1.0 51.83070
4 halo_20355327 CLUSTER -94.48 75.29 -1 0.00124 1644.94 635981.23866 240.83028 kZHAO 1.0 3.0 1.0 119.66328
5 halo_2503990 CLUSTER -35.24 -12.06 -1 0.01118 3164.45 600754.77263 478.21044 kZHAO 1.0 3.0 1.0 27.04669
6 halo_21251859 CLUSTER 31.15 44.45 -1 0.00824 2731.34 595715.63380 413.32640 kZHAO 1.0 3.0 1.0 31.59913
7 halo_745775 CLUSTER -47.49 36.08 -1 0.01000 2878.14 597011.32933 435.71418 kZHAO 1.0 3.0 1.0 27.49495
8 halo_3003328 CLUSTER 39.76 -46.41 -1 0.01349 3172.97 602266.09230 479.82208 kZHAO 1.0 3.0 1.0 22.50342
9 halo_4200359 CLUSTER -28.67 -22.77 -1 0.00312 1826.88 621061.51007 270.55674 kZHAO 1.0 3.0 1.0 55.35257

Load in the halo catalogue

In [126]:
boxsize = 677.7

halos = np.load("/users/hdesmond/Mmain/Mmain_9844.npy")
names = ["id", "x", "y", "z", "M"]
halos = {k: halos[:, i] for i, k in enumerate(names)}
halos["id"] = halos["id"].astype(int)
# Coordinates are in box units. Convert to Mpc/h
for p in ("x", "y", "z"):
    halos[p] = halos[p] * boxsize

halos["dist"] = np.sqrt((halos["x"] - boxsize/2)**2 + (halos["y"] - boxsize/2)**2 + (halos["z"] - boxsize/2)**2)
In [142]:
# Find which item in the catalogue matches the nth halo in the .txt file
n = 0
k = np.where(data["id"][n] == halos["id"])[0][0]
print(k)
5791
In [143]:
data["dist"][n], halos["dist"][k]
Out[143]:
(34.14606698507264, 149.24046381654668)