csiborgtools/notebooks/perseus.ipynb
Richard Stiskalek eb8d070fff
CSiBORG FoF switch (#75)
* Add moving FoF membership files

* add FoF membership path

* Add notes where its PHEW

* Add FoF catalogue path

* Correct typo

* Add more functionalities

* Make work with halo IDs from FoF

* Edit print statement

* Fix copy bug

* copy

* Add FoF catalogue reading

* Clean up script

* Fix typo

* Little edits

* Fix naming convention

* Rename key

* Remove loading substructure particles

* Rename CSiBORG Cat

* Rename clumps cat

* Rename cat

* Remove misplaced import

* Switch to halos

* rm import

* structfit of only halos

* Add FoF halo reading

* Add a short comment

* Fix __getitem__ to work with int

* Fix problems

* Improve __getitem__

* Add more conversion

* Fix indexing

* Fix __getitem__ assertion

* Fix numbers

* Rename

* Fix verbosity flags

* Add full Quijote HMF option

* Add plot of Quijote only

* Add quijote full paths

* Fix the fit_init script

* Renam arg

* Update .gitignore

* add default argument name

* Change default verbosity flag

* Modernise script structure

* Fix dictionary

* Fix reading to include m200c

* Modernise script

* Add args
2023-07-24 14:10:21 +02:00

25 KiB

In [219]:
import numpy as np

import matplotlib.pyplot as plt
from h5py import File
%matplotlib inline

from jax import numpy as jnp
import jax

from numpyro.infer import MCMC, NUTS, util

import csiborgtools

%load_ext autoreload
%autoreload 2


paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

LOS density & radial velocity plots

In [4]:
fpath = "/mnt/extraspace/rstiskalek/catalogs/A2.h5"

loader_carrick = csiborgtools.flow.DataLoader("Carrick2015", "A2", fpath, paths, ksmooth=None)
loader_csiborg = csiborgtools.flow.DataLoader("csiborg1", "A2", fpath, paths, ksmooth=1)
14:31:30: reading the catalogue.
14:31:30: reading the interpolated field.
100%|██████████| 1/1 [00:00<00:00,  6.08it/s]
/mnt/users/rstiskalek/csiborgtools/csiborgtools/flow/flow_model.py:102: UserWarning: The number of radial steps is even. Skipping the first step at 0.0 because Simpson's rule requires an odd number of steps.
  warn(f"The number of radial steps is even. Skipping the first "
14:31:31: calculating the radial velocity.
100%|██████████| 452/452 [00:00<00:00, 23479.46it/s]
14:31:31: reading the catalogue.
14:31:31: reading the interpolated field.
100%|██████████| 101/101 [00:22<00:00,  4.53it/s]
14:31:53: calculating the radial velocity.
100%|██████████| 452/452 [00:02<00:00, 171.48it/s]
In [8]:
# ks = [115,  53,  77, 105,  26,  61,  86,  29,  80,  21]

k = 50
fig, axs = plt.subplots(2, 1, figsize=(7, 7), sharex=True)
# Get rid of vertical spacing
fig.subplots_adjust(wspace=0)

# Plot CSiBORG
for i in range(101):
    axs[0].plot(loader_csiborg.rdist, loader_csiborg.los_density[k, i, :], alpha=0.1, color="black")
    axs[1].plot(loader_csiborg.rdist, loader_csiborg.los_radial_velocity[k, i, :], alpha=0.1, color="black")

axs[0].plot(loader_csiborg.rdist, loader_csiborg.los_density[k, :, :].mean(axis=0), color="red", label="CSiBORG1")
axs[1].plot(loader_csiborg.rdist, loader_csiborg.los_radial_velocity[k, :, :].mean(axis=0), color="red")

# Plot Carrick+2015
axs[0].plot(loader_carrick.rdist, loader_carrick.los_density[k, 0, :], color="blue", label="Carrick+2015")
axs[1].plot(loader_carrick.rdist, loader_carrick.los_radial_velocity[k, 0, :], color="blue")


for i in range(2):
    label = "SN"
    rdist = loader_csiborg.cat["r_hMpc"][k]
    axs[i].axvline(rdist, color="violet", linestyle="--",
                zorder=0, label=label)

axs[1].set_xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
axs[0].set_ylabel(r"$\rho_{\rm LOS} / \langle \rho_{\rm matter} \rangle$")
axs[1].set_ylabel(r"$v_{\rm LOS} ~ [\mathrm{km/s}]$")

axs[0].set_yscale("log")

axs[0].legend(loc="upper right")
axs[0].set_xlim(0, 200)

fig.tight_layout(w_pad=0, h_pad=0)
# fig.savefig(f"../plots/example_los.png", dpi=500, bbox_inches="tight")

fig.show()
No description has been provided for this image

Test running a model

In [220]:
# fpath_data = "/mnt/extraspace/rstiskalek/catalogs/PV_compilation_Supranta2019.hdf5"
fpath_data = "/mnt/extraspace/rstiskalek/catalogs/A2.h5"
loader = csiborgtools.flow.DataLoader("Carrick2015", "A2", fpath_data, paths, ksmooth=0)
Omega_m = csiborgtools.simname2Omega_m("Carrick2015")
10:31:41: reading the catalogue.
10:31:41: reading the interpolated field.
100%|██████████| 1/1 [00:00<00:00,  6.57it/s]
/mnt/users/rstiskalek/csiborgtools/csiborgtools/flow/flow_model.py:102: UserWarning: The number of radial steps is even. Skipping the first step at 0.0 because Simpson's rule requires an odd number of steps.
  simname, catalogue, ksmooth, paths)
10:31:41: calculating the radial velocity.
100%|██████████| 452/452 [00:00<00:00, 24805.05it/s]
In [221]:
los_overdensity = loader.los_density[:, 0, :]
los_velocity = loader.los_radial_velocity[:, 0, :]

# # PV calibration
# RA = loader.cat["RA"]
# dec = loader.cat["DEC"]
# zCMB = loader.cat["z_CMB"]

# mB = loader.cat["mB"]
# x1 = loader.cat["x1"]
# c = loader.cat["c"]

# e_mB = loader.cat["e_mB"]
# e_x1 = loader.cat["e_x1"]
# e_c = loader.cat["e_c"]

# PV no calibration
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
z_obs = loader.cat["z_obs"]

r_hMpc = loader.cat["r_hMpc"]
e_r_hMpc = loader.cat["e_rhMpc"]
In [222]:
model = csiborgtools.flow.SD_PV_validation_model(los_overdensity, los_velocity, RA, dec, z_obs, r_hMpc, e_r_hMpc, loader.rdist, Omega_m)

# model_old = csiborgtools.flow.SN_PV_validation_model_old
In [223]:
true_samples = {'Vext_x': jnp.array(0.0, dtype=jnp.float32),
                'Vext_y': jnp.array(0.0, dtype=jnp.float32),
                'Vext_z': jnp.array(0.0, dtype=jnp.float32),
                'alpha': jnp.array(1, dtype=jnp.float32),
                'beta': jnp.array(1, dtype=jnp.float32),
                'sigma_v': jnp.array(112, dtype=jnp.float32),
                }

util.log_likelihood(model, true_samples)
Out[223]:
{'ll': Array(-3291.0427, dtype=float32)}
In [228]:
nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_warmup=500, num_samples=500, chain_method="sequential")
rng_key = jax.random.PRNGKey(0)
In [229]:
mcmc.run(rng_key)
sample: 100%|██████████| 1000/1000 [01:15<00:00, 13.27it/s, 3 steps of size 7.11e-01. acc. prob=0.88]
In [231]:
mcmc.print_summary()
samples = mcmc.get_samples(group_by_chain=False)
                mean       std    median      5.0%     95.0%     n_eff     r_hat
    Vext_x    -62.10     18.47    -61.58    -97.45    -36.33    655.27      1.00
    Vext_y     24.97     27.82     24.77    -12.97     78.06    669.10      1.00
    Vext_z      3.54     25.23      2.67    -37.75     42.72    495.87      1.00
     alpha      1.64      0.21      1.65      1.29      1.98    473.75      1.00
      beta      0.83      0.06      0.84      0.73      0.94    542.08      1.00
   sigma_v    158.64     14.09    158.77    133.78    180.44    627.47      1.00

Number of divergences: 0
In [232]:
plt.figure()
plt.scatter(samples["alpha"], samples["beta"])
plt.show()
No description has been provided for this image

Vizualize the results

In [49]:
with File("/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_A2_Carrick2015.hdf5", 'r') as f:
    beta = f["sim_0/Vext_z"][:]
In [50]:
plt.figure()
plt.hist(beta, bins="auto", density=True, histtype="step")

plt.show()
No description has been provided for this image
In [ ]: