mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-14 06:31:11 +00:00
* Update redshift reading * Add helio to CMB redshift * Update imports * Update nb * Run for Quijote * Add script * Update * Update .gitignore * Update imports * Add Peery estimator * Add bulk flow scripts * Update typs * Add comment * Add blank space * Update submission script * Update description * Add barriers * Update nb * Update nb * Rename script * Move to old * Update imports * Add nb * Update script * Fix catalogue key * Update script * Update submit * Update comment * Update .gitignore * Update nb * Update for stationary obsrevers * Update submission * Add nb * Add better verbose control * Update nb * Update submit * Update nb * Add SN errors * Add draft of the script * Update verbosity flags * Add submission script * Debug script * Quickfix * Remove comment * Update nb * Update submission * Update nb * Processed UPGLADE
41 KiB
41 KiB
In [1]:
import numpy as np
import matplotlib.pyplot as plt
from h5py import File
from scipy.stats import spearmanr
import csiborgtools
%matplotlib inline
%load_ext autoreload
%autoreload 2
In [2]:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# d = np.load(paths.field_interpolated("SDSS", "csiborg2_main", 16817, "density", "SPH", 1024))
In [33]:
survey = csiborgtools.SDSS()(apply_selection=False)
# survey = csiborgtools.SDSSxALFALFA()(apply_selection=False)
In [35]:
for kind in ["main", "random"]:
x, smooth = csiborgtools.summary.read_interpolated_field(survey, f"csiborg2_{kind}", "density", "SPH", 1024, paths)
np .savez(f"../data/{survey.name}_{kind}_density_SPH_1024.npz", val=x, smooth_scales=smooth)
In [37]:
Out[37]:
In [24]:
np.load("../data/SDSS_main_density_SPH_1024.npz")["val"]
Out[24]:
In [ ]: