mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:38:02 +00:00
779f2e76ac
* Update redshift reading * Add helio to CMB redshift * Update imports * Update nb * Run for Quijote * Add script * Update * Update .gitignore * Update imports * Add Peery estimator * Add bulk flow scripts * Update typs * Add comment * Add blank space * Update submission script * Update description * Add barriers * Update nb * Update nb * Rename script * Move to old * Update imports * Add nb * Update script * Fix catalogue key * Update script * Update submit * Update comment * Update .gitignore * Update nb * Update for stationary obsrevers * Update submission * Add nb * Add better verbose control * Update nb * Update submit * Update nb * Add SN errors * Add draft of the script * Update verbosity flags * Add submission script * Debug script * Quickfix * Remove comment * Update nb * Update submission * Update nb * Processed UPGLADE
3.9 KiB
3.9 KiB
In [1]:
import matplotlib.pyplot as plt
import numpy
import scienceplots
from h5py import File
import plt_utils
%load_ext autoreload
%autoreload 2
In [12]:
with File("/mnt/extraspace/rstiskalek/csiborg_postprocessing/ACL/BORG2_0.25.hdf5", 'r') as f:
voxel_acl = f['voxel_acl'][...].flatten()
voxel_dist = f['voxel_dist'][...].flatten()
In [28]:
bins = numpy.linspace(0, 100, 10)
plt.figure()
mask = voxel_dist < 20
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$0 < R / (\mathrm{Mpc} / h) < 20$")
mask = (voxel_dist > 20) & (voxel_dist < 40)
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$20 < R / (\mathrm{Mpc} / h) < 40$")
mask = (voxel_dist > 40) & (voxel_dist < 60)
plt.hist(voxel_acl[mask], bins="auto", histtype='step', density=1, label=r"$40 < R / (\mathrm{Mpc} / h) < 60$")
# plt.scatter(voxel_dist.flatten(), voxel_acl.flatten(), s=0.1)
plt.legend()
plt.title("ACL of individual voxels")
plt.xlabel(r"$\mathrm{ACL}$")
plt.ylabel(r"Normalized bin counts")
plt.tight_layout()
plt.savefig("../plots/BORG_Stephen_ACL.png", dpi=450)
plt.show()
In [ ]: