mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:28:02 +00:00
779f2e76ac
* Update redshift reading * Add helio to CMB redshift * Update imports * Update nb * Run for Quijote * Add script * Update * Update .gitignore * Update imports * Add Peery estimator * Add bulk flow scripts * Update typs * Add comment * Add blank space * Update submission script * Update description * Add barriers * Update nb * Update nb * Rename script * Move to old * Update imports * Add nb * Update script * Fix catalogue key * Update script * Update submit * Update comment * Update .gitignore * Update nb * Update for stationary obsrevers * Update submission * Add nb * Add better verbose control * Update nb * Update submit * Update nb * Add SN errors * Add draft of the script * Update verbosity flags * Add submission script * Debug script * Quickfix * Remove comment * Update nb * Update submission * Update nb * Processed UPGLADE
1.1 MiB
1.1 MiB
Quijote $C_{\ell}$ of the LOS pecululiar velocity covariance¶
In [5]:
import numpy as np
import matplotlib.pyplot as plt
import healpy
from h5py import File
import csiborgtools
import healpy as hp
from scipy.special import spherical_jn
from scipy.interpolate import interp1d
from scipy.integrate import quad
%load_ext autoreload
%autoreload 2
%matplotlib inline
In [8]:
k, Pk = np.load("/mnt/users/rstiskalek/BayesianBulkFlows/data/pk_fiducial.npy").T
loglog_Pk = interp1d(np.log(k), np.log(Pk))
def Pk(k):
return np.exp(loglog_Pk(np.log(k)))
def djn(n, x):
return (n / x) * spherical_jn(n, x) - spherical_jn(n + 1, x)
def C_ell_theory_equal_radius(ell, r):
dDdtau = 35.5
norm = dDdtau**2
integrand = lambda k: norm * Pk(k) * djn(ell, k * r)**2
return quad(integrand, 0.0001, 10, limit=1000, limlst=5)[0]
In [12]:
num_simulations = None
load_skymaps = False
with File("/mnt/extraspace/rstiskalek/BBF/Quijote_Cell/C_ell_fiducial.h5", 'r') as f:
num_observers = f.attrs["num_observers"]
num_radii = f.attrs["num_radii"]
npix_per_map = f.attrs["npix_per_map"]
if num_simulations is None:
num_simulations = f.attrs["num_simulations"]
ell = f["ell"][:]
radii = f["radii"][:]
Cell = []
if load_skymaps:
skymap = []
for n in range(num_simulations):
grp_simulation = f[f"nsim_{n}"]
for i in range(num_observers):
grp_observer = grp_simulation[f"observer_{i}"]
Cell_ = np.full((num_radii, len(ell)), np.nan)
if load_skymaps:
skymap_ = np.full((num_radii, npix_per_map), np.nan)
else:
skymap_ = None
for j in range(num_radii):
Cell_[j] = grp_observer[f"C_ell_{j}"][...]
if load_skymaps:
skymap_[j] = grp_observer[f"skymap_{j}"][...]
Cell.append(Cell_)
if load_skymaps:
skymap.append(skymap_)
Cell = np.stack(Cell)
if load_skymaps:
skymap = np.stack(skymap)
print(f"Num. simulations: {num_simulations}")
print(f"Num. observers: {num_observers}")
print(f"Num. radii: {num_radii}")
print(f"Radii: {radii}")
print("Dividing the dipole by a factor of 9:")
Cell[..., 1] /= 9
In [10]:
# healpy.mollview(skymap[2, 4], title=None, cmap="coolwarm", unit=r"$V_{\rm rad} ~ [{\rm km/s}]$", )
# plt.savefig("../../plots/skymap.png", dpi=450)
In [21]:
k = -1
ytheory = [C_ell_theory_equal_radius(i, radii[k]) for i in ell]
In [23]:
plt.figure()
plt.title(r"$C_{\ell}$ but $C_{1}$ divided by 9")
ylow, ymed, yhigh = np.percentile(Cell[:, k, :], [16, 50, 84], axis=0)
plt.plot(ell, ymed, label="Quijote")
plt.fill_between(ell, ylow, yhigh, alpha=0.3)
plt.plot(ell, ytheory, label="Linear theory", color="black", linestyle="--")
plt.legend()
plt.xlabel(r"$\ell$")
plt.ylabel(r"$C_{\rm ell}$")
plt.xlim(ell.min(), ell.max())
plt.yscale("log")
plt.savefig("../../plots/C_ell.png", dpi=450)
plt.show()
In [ ]:
In [ ]:
In [ ]:
fig, axs = plt.subplots(len(radii), 1, figsize=(5, 4 * len(radii)), sharex=True)
for k in range(len(radii)):
ylow, ymed, yhigh = np.percentile(C_ell[:, k], [16, 50, 84], axis=0)
axs[k].plot(ell, ymed, label=rf"$R = {radii[k]} ~ [\mathrm{{Mpc}} / h]$")
axs[k].fill_between(ell, ylow, yhigh, alpha=0.1)
Cell_theory = [C_ell_theory_equal_radius(ell_, radii[k]) for ell_ in ell]
axs[k].plot(ell, Cell_theory, color="black", label="Theory")
axs[k].set_yscale("log")
axs[k].legend()
axs[k].set_ylabel(r"$C_{\ell}$")
axs[k].set_xlabel(r"$\ell$")
axs[-1].set_xlim(0, ell.max())
fig.tight_layout()
fig.savefig("../../plots/C_ell_fiducial.png", dpi=450)
fig.show()
In [ ]:
In [ ]:
hp.mollview(skymap[4], unit=r"$V_{\rm rad} ~ [\mathrm{km} / \mathrm{s}]$", cmap="coolwarm")
In [ ]:
k = 4
Cell_theory = [C_ell_theory_equal_radius(ell_, radii[k]) for ell_ in ell]
plt.figure()
plt.title(f"R = {radii[k]}")
for n in range(50):
plt.plot(ell, C_ell[n, k], alpha=0.1, color="black")
plt.plot(ell, C_ell[0, k], color="red", label="Simulated")
plt.plot(ell, Cell_theory, color="blue", label="Theory")
plt.yscale("log")
plt.show()
In [ ]: