csiborgtools/notebooks/powerspectrum_test.ipynb
Richard Stiskalek aaa14fc880
Add density field plot and start preparing CSiBORG2 (#94)
* Add RAMSES2HDF5 conversion

* Upload changes

* Clean up

* More clean up

* updates

* Little change

* pep9

* Add basic SPH calculation for a snapshot

* Add submit script

* Remove echo

* Little changes

* Send off changes

* Little formatting

* Little updates

* Add nthreads argument

* Upload chagnes

* Add nthreads arguemnts

* Some local changes..

* Update scripts

* Add submission script

* Update script

* Update params

* Rename CSiBORGBox to CSiBORG1box

* Rename CSiBORG1 reader

* Move files

* Rename folder again

* Add basic plotting here

* Add new skeletons

* Move def

* Update nbs

* Edit directories

* Rename files

* Add units to converted snapshots

* Fix empty dataset bug

* Delete file

* Edits to submission scripts

* Edit paths

* Update .gitignore

* Fix attrs

* Update weighting

* Fix RA/dec bug

* Add FORNAX cluster

* Little edit

* Remove boxes since will no longer need

* Move func back

* Edit to include sort by membership

* Edit paths

* Purge basic things

* Start removing

* Bring file back

* Scratch

* Update the rest

* Improve the entire file

* Remove old things

* Remove old

* Delete old things

* Fully updates

* Rename file

* Edit submit script

* Little things

* Add print statement

* Add here cols_to_structured

* Edit halo cat

* Remove old import

* Add comment

* Update paths manager

* Move file

* Remove file

* Add chains
2023-12-13 16:08:25 +00:00

1,009 KiB

In [1]:
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
# Local imports
try:
    import csiborgtools
except ModuleNotFoundError:
    import sys
    sys.path.append("../")
    import csiborgtools
import utils

%load_ext autoreload
%autoreload 2
In [2]:
obs = utils.load_2mpp()


cols = ["ra", "dec", "mass_cl", "dist"]
mmains = utils.load_mmains(1)
mmains = csiborgtools.utils.list_to_ndarray(mmains, cols)
sim = mmains[0, ...]
sim = csiborgtools.utils.array_to_structured(sim ,cols)
planck = utils.load_planck2015()
100%|█████████████████████████████████████████████| 1/1 [00:00<00:00,  4.37it/s]
In [3]:
dx = 20
dmin = 125
dmax = dmin + dx

mask_obs = (dmin < obs["CDIST_CMB"]) & (obs["CDIST_CMB"] < dmax)
mask_sim = (dmin < sim["dist"]) & (sim["dist"] < dmax) & (sim["mass_cl"] > 1e12)

width = 6.4
plt.figure(figsize=(width, width*0.75))
plt.scatter(obs["RA"][mask_obs], obs["DEC"][mask_obs], s=1.5, label="2M++")
plt.scatter(sim["ra"][mask_sim] , sim["dec"][mask_sim], s=1.5, label="CSiBORG")
plt.scatter(planck["RA"], planck["DEC"], label="Planck SZ clusters < 214 MPc", c="red")


plt.legend()
plt.xlabel("RA")
plt.ylabel("dec")
plt.tight_layout()
# plt.savefig("../plots/2mpp_overlap.png", dpi=450)
plt.show()
No description has been provided for this image
In [ ]: