csiborgtools/scripts/halo_overlap/fit_init.py
Richard Stiskalek d578c71b83
LSS projected basics (#140)
* Move files

* Move files

* Add galactic to RA/dec

* Update sky maps

* Add projected fields

* Remove old import

* Quick update

* Add IO

* Add imports

* Update imports

* Add basic file
2024-08-14 13:02:38 +02:00

128 lines
5 KiB
Python

# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to calculate the particle centre of mass and Lagrangian patch size in
the initial snapshot. The initial snapshot particles are read from the sorted
files.
"""
from argparse import ArgumentParser
from datetime import datetime
import csiborgtools
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
from tqdm import tqdm
from utils import get_nsims
def _main(nsim, simname, verbose):
"""
Calculate and save the Lagrangian halo centre of mass and Lagrangian patch
size in the initial snapshot.
Parameters
----------
nsim : int
IC realisation index.
simname : str
Simulation name.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cols = [("index", numpy.int32),
("x", numpy.float32),
("y", numpy.float32),
("z", numpy.float32),
("lagpatch_size", numpy.float32),
("lagpatch_ncells", numpy.int32),]
if simname == "csiborg1":
snap = csiborgtools.read.CSiBORG1Snapshot(nsim, 1, paths,
keep_snapshot_open=True)
cat = csiborgtools.read.CSiBORG1Catalogue(nsim, paths, snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{nsim}/initial_lagpatch.npy" # noqa
elif "csiborg2" in simname:
kind = simname.split("_")[-1]
snap = csiborgtools.read.CSiBORG2Snapshot(nsim, 0, kind, paths,
keep_snapshot_open=True)
cat = csiborgtools.read.CSiBORG2Catalogue(nsim, 99, kind, paths,
snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/csiborg2_{kind}/catalogues/initial_lagpatch_{nsim}.npy" # noqa
elif simname == "quijote":
snap = csiborgtools.read.QuijoteSnapshot(nsim, "ICs", paths,
keep_snapshot_open=True)
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths,
snapshot=snap)
fout = f"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_{nsim}/initial_lagpatch.npy" # noqa
else:
raise ValueError(f"Unknown simulation name `{simname}`.")
boxsize = csiborgtools.simname2boxsize(simname)
# Initialise the overlapper.
if simname == "csiborg" or "csiborg2" in simname:
kwargs = {"box_size": 2048, "bckg_halfsize": 512}
else:
kwargs = {"box_size": 512, "bckg_halfsize": 256}
overlapper = csiborgtools.match.ParticleOverlap(**kwargs)
out = csiborgtools.read.cols_to_structured(len(cat), cols)
for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]):
out["index"][i] = hid
pos = snap.halo_coordinates(hid)
mass = snap.halo_masses(hid)
# Calculate the centre of mass and the Lagrangian patch size.
cm = csiborgtools.center_of_mass(pos, mass, boxsize=boxsize)
distances = csiborgtools.periodic_distance(pos, cm, boxsize=boxsize)
out["x"][i], out["y"][i], out["z"][i] = cm
out["lagpatch_size"][i] = numpy.percentile(distances, 99)
pos /= boxsize # need to normalize the positions to be [0, 1).
# Calculate the number of cells with > 0 density.
delta = overlapper.make_delta(pos, mass, subbox=True)
out["lagpatch_ncells"][i] = csiborgtools.delta2ncells(delta)
# Now save it
if verbose:
print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True)
with open(fout, "wb") as f:
numpy.save(f, out)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--simname", type=str,
choices=["csiborg1", "csiborg2_main", "csiborg2_random", "csiborg2_varysmall", "quijote"], # noqa
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all.")
args = parser.parse_args()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(args, paths)
def main(nsim):
_main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1)
work_delegation(main, nsims, MPI.COMM_WORLD)