LSS projected basics ()

* Move files

* Move files

* Add galactic to RA/dec

* Update sky maps

* Add projected fields

* Remove old import

* Quick update

* Add IO

* Add imports

* Update imports

* Add basic file
This commit is contained in:
Richard Stiskalek 2024-08-14 13:02:38 +02:00 committed by GitHub
parent 3b46f17ead
commit d578c71b83
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
36 changed files with 365 additions and 231 deletions

View file

@ -22,7 +22,7 @@ from .utils import (center_of_mass, delta2ncells, number_counts,
radec_to_cartesian, cartesian_to_radec, # noqa
thin_samples_by_acl, BIC_AIC, radec_to_galactic, # noqa
heliocentric_to_cmb, calculate_acl, harmonic_evidence, # noqa
dict_samples_to_array) # noqa
dict_samples_to_array, galactic_to_radec) # noqa
from .params import (paths_glamdring, simname2boxsize, simname2Omega_m, # noqa
snap2redshift) # noqa

View file

@ -0,0 +1,16 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .io import read_CMB_temperature # noqa

View file

@ -0,0 +1,59 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Various I/O functions for reading and writing data.
"""
from warnings import warn
import healpy as hp
from astropy.io import fits
def read_CMB_temperature(fname=None, nside_out=None,
convert_to_ring_ordering=True, normalize=False,
verbose=True):
"""
Read the CMB temperature map from a FITS file.
"""
if fname is None:
warn("Using the glamdrnig path to the default temperature map.",
UserWarning)
fname = "/mnt/extraspace/rstiskalek/catalogs/CMB/COM_CMB_IQU-smica_2048_R3.00_full.fits" # noqa
f = fits.open(fname)
if verbose:
print(f"Reading CMB temperature map from `{fname}`.")
skymap = f[1].data["I_STOKES"]
mask = f[1].data["TMASK"]
f.close()
if nside_out is not None:
if verbose:
print(f"Moving to nside = {nside_out}...")
skymap = hp.pixelfunc.ud_grade(skymap, nside_out, order_in="NESTED")
mask = hp.pixelfunc.ud_grade(mask, nside_out, order_in="NESTED")
if convert_to_ring_ordering:
if verbose:
print("Converting to RING ordering...")
skymap = hp.reorder(skymap, n2r=True)
mask = hp.reorder(mask, n2r=True)
if normalize:
skymap -= skymap.mean()
skymap /= skymap.std()
return skymap, mask

View file

@ -19,8 +19,8 @@ try:
from .density import (DensityField, PotentialField, TidalTensorField, # noqa
VelocityField, radial_velocity, power_spectrum, # noqa
overdensity_field) # noqa
from .interp import (evaluate_cartesian_cic, evaluate_sky, evaluate_los, # noqa
field2rsp, fill_outside, make_sky, # noqa
from .interp import (evaluate_cartesian_cic, evaluate_los, field2rsp, # noqa
fill_outside, make_sky, # noqa
observer_peculiar_velocity, smoothen_field, # noqa
field_at_distance) # noqa
except ImportError:

View file

@ -20,7 +20,7 @@ import numpy as np
import smoothing_library as SL
from numba import jit
from scipy.interpolate import RegularGridInterpolator
from tqdm import tqdm, trange
from tqdm import tqdm
from ..utils import periodic_wrap_grid, radec_to_cartesian
from .utils import divide_nonzero, force_single_precision, nside2radec
@ -303,56 +303,13 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
###############################################################################
def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False):
"""
Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions
[0, 360) deg and declinations [-90, 90] deg. Uses CIC interpolation.
Parameters
----------
fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
Field to be interpolated.
pos : 2-dimensional array of shape `(n_samples, 3)`
Query spherical coordinates.
mpc2box : float
Conversion factor to multiply the radial distance by to get box units.
smooth_scales : (list of) float, optional
Smoothing scales in `Mpc / h`. If `None`, no smoothing is performed.
verbose : bool, optional
Smoothing verbosity flag.
Returns
-------
(list of) 1-dimensional array of shape `(n_samples, len(smooth_scales))`
"""
# Make a copy of the positions to avoid modifying the input.
pos = np.copy(pos)
pos = force_single_precision(pos)
pos[:, 0] *= mpc2box
cart_pos = radec_to_cartesian(pos) + 0.5
if smooth_scales is not None:
if isinstance(smooth_scales, (int, float)):
smooth_scales = [smooth_scales]
if isinstance(smooth_scales, list):
smooth_scales = np.array(smooth_scales, dtype=np.float32)
smooth_scales *= mpc2box
return evaluate_cartesian_cic(*fields, pos=cart_pos,
smooth_scales=smooth_scales,
verbose=verbose)
def make_sky(field, angpos, dist, boxsize, verbose=True):
def make_sky(field, angpos, rmax, dr, boxsize, interpolation_method="cic",
return_full=False, verbose=True):
r"""
Make a sky map of a scalar field. The observer is in the centre of the
box the field is evaluated along directions `angpos` (RA [0, 360) deg,
dec [-90, 90] deg). Along each direction, the field is evaluated distances
`dist` (`Mpc / h`) and summed. Uses CIC interpolation.
dec [-90, 90] deg). The field is evaluated up to `rmax` with a linear
spacing of `dr` in `Mpc / h`.
Parameters
----------
@ -360,39 +317,38 @@ def make_sky(field, angpos, dist, boxsize, verbose=True):
Field to be interpolated
angpos : 2-dimensional arrays of shape `(ndir, 2)`
Directions to evaluate the field.
dist : 1-dimensional array
Uniformly spaced radial distances to evaluate the field in `Mpc / h`.
rmax : float
Maximum radial distance in `Mpc / h`.
dr : float
Radial distance step in `Mpc / h`.
boxsize : float
Box size in `Mpc / h`.
interpolation_method : str, optional
Interpolation method. Must be one of `cic` or one of the methods of
`scipy.interpolate.RegularGridInterpolator`.
return_full : bool, optional
If `True`, return the full interpolated field instead of the average
field at each radial distance.
verbose : bool, optional
Verbosity flag.
Returns
-------
interp_field : 1-dimensional array of shape `(n_pos, )`.
interp_field : 1-dimensional array of shape `(n_pos, )`
"""
dx = dist[1] - dist[0]
assert np.allclose(dist[1:] - dist[:-1], dx)
assert angpos.ndim == 2 and dist.ndim == 1
rdist, finterp = evaluate_los(
field, sky_pos=angpos, boxsize=boxsize, rmax=rmax, dr=dr,
smooth_scales=None, verbose=verbose,
interpolation_method=interpolation_method)
# We loop over the angular directions, at each step evaluating a vector
# of distances. We pre-allocate arrays for speed.
dir_loop = np.full((dist.size, 3), np.nan, dtype=np.float32)
if return_full:
return rdist, finterp
ndir = angpos.shape[0]
out = np.full(ndir, np.nan, dtype=np.float32)
for i in trange(ndir) if verbose else range(ndir):
dir_loop[:, 0] = dist
dir_loop[:, 1] = angpos[i, 0]
dir_loop[:, 2] = angpos[i, 1]
finterp *= rdist**2
finterp = np.trapz(finterp, x=rdist, axis=1)
finterp /= np.trapz(rdist**2, x=rdist)
out[i] = np.sum(
dist**2 * evaluate_sky(field, pos=dir_loop, mpc2box=1 / boxsize))
# Assuming the field is in h^2 Msun / kpc**3, we need to convert Mpc / h
# to kpc / h and multiply by the pixel area.
out *= dx * 1e9 * 4 * np.pi / len(angpos)
return out
return finterp
###############################################################################

View file

@ -634,3 +634,24 @@ class Paths:
fdir = join(self.postdir, "field_los")
try_create_directory(fdir)
return join(fdir, f"los_{catalogue}_{simnname}.hdf5")
def field_projected(self, simname, kind):
"""
Path to the files containing the projected fields on the sky.
Parameters
----------
simname : str
Simulation name.
kind : str
Field type.
Returns
-------
str
"""
fdir = join(self.postdir, "field_projected")
try_create_directory(fdir)
return join(fdir, f"{simname}_{kind}_volume_weighted.hdf5")

View file

@ -13,6 +13,7 @@
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .cmb_correlation import read_projected_matter # noqa
from .knn_summary import kNNCDFReader # noqa
from .nearest_neighbour_summary import NearestNeighbourReader # noqa
from .overlap_summary import weighted_stats # noqa

View file

@ -0,0 +1,80 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Useful functions for getting summary data for CMB x MATTER cross-correlation.
"""
import numpy as np
from h5py import File
from healpy.sphtfunc import smoothing
import healpy as hp
from tqdm import tqdm
def read_projected_matter(simname, paths, fwhm_deg=None, remove_monopole=False,
remove_dipole=False, normalize=False):
"""
Read the projected matter density field for a given simulation.
Parameters
----------
simname : str
The name of the simulation.
paths : csiborgtools.read.Paths
Paths object.
fwhm_deg : float, optional
The full-width at half-maximum of the smoothing kernel in degrees.
remove_monopole : bool, optional
Whether to remove the monopole from the field.
remove_dipole : bool, optional
Whether to remove the dipole from the field.
normalize : bool, optional
Whether to apply standard normalization to the field.
Returns
-------
dist_ranges : 2-dimensional array of shape (n_dist_ranges, 2)
The distance ranges for the field.
data : 3-dimensional array of shape (n_sims, n_dist_ranges, npix)
The projected matter density field.
"""
kind = "density"
nsims = paths.get_ics(simname)
fname = paths.field_projected(simname, kind)
with File(fname, "r") as f:
dist_ranges = f["dist_ranges"][...]
npix = len(f[f"nsim_{nsims[0]}/dist_range_0"])
data = np.zeros((len(nsims), len(dist_ranges), npix))
for i, nsim in enumerate(tqdm(nsims, desc="Simulations")):
for j in range(len(dist_ranges)):
skymap = f[f"nsim_{nsim}/dist_range_{j}"][...]
if fwhm_deg is not None:
skymap = smoothing(skymap, fwhm=fwhm_deg * np.pi / 180.0)
if remove_monopole:
hp.pixelfunc.remove_monopole(skymap, copy=False)
if remove_dipole:
hp.pixelfunc.remove_dipole(skymap, copy=False)
if normalize:
skymap -= np.mean(skymap)
skymap /= np.std(skymap)
data[i, j] = skymap
return dist_ranges, data

View file

@ -163,6 +163,12 @@ def radec_to_galactic(ra, dec):
return c.galactic.l.degree, c.galactic.b.degree
def galactic_to_radec(l, b): # noqa
"""Convert galactic coordinates to right ascension and declination."""
c = SkyCoord(l=l*u.degree, b=b*u.degree, frame='galactic')
return c.icrs.ra.degree, c.icrs.dec.degree
def radec_to_supergalactic(ra, dec):
"""Convert right ascension and declination to supergalactic coordinates."""
c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs')

View file

@ -0,0 +1,127 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate the projected density field for a given simulation as a
sky map. The script is not parallelized in any way. The generated fields are
converted to galactic coordinates to match the CMB maps.
"""
from argparse import ArgumentParser
from os import remove
from os.path import exists, join
import csiborgtools
import numpy as np
from h5py import File
def get_field(simname, nsim, field_kind, MAS, grid):
"""Get the appropriate field reader for the simulation."""
if simname == "csiborg1":
reader = csiborgtools.read.CSiBORG1Field(nsim)
elif "csiborg2" in simname:
kind = simname.split("_")[-1]
reader = csiborgtools.read.CSiBORG2Field(nsim, kind)
elif simname == "csiborg2X":
reader = csiborgtools.read.CSiBORG2XField(nsim)
elif "quijote" in simname:
reader = csiborgtools.read.QuijoteField(nsim)
else:
raise ValueError(f"Unknown simname: `{simname}`.")
if field_kind == "density":
return reader.density_field(MAS, grid)
else:
raise ValueError(f"Unknown field kind: `{field_kind}`.")
def main(simname, nsims, field_kind, nside, dist_ranges, MAS, grid,
volume_weight, folder, normalize_to_overdensity=True):
boxsize = csiborgtools.simname2boxsize(simname)
Om0 = csiborgtools.simname2Omega_m(simname)
matter_density = Om0 * 277.53662724583074 # Msun / kpc^3
fname = join(folder, f"{simname}_{field_kind}.hdf5")
if volume_weight:
fname = fname.replace(".hdf5", "_volume_weighted.hdf5")
print(f"Writing to `{fname}`...")
if exists(fname):
remove(fname)
with File(fname, "w") as f:
f.create_dataset("dist_ranges", data=np.asarray(dist_ranges))
f.create_dataset("nsims", data=nsims)
# These are at first generated in RA/dec but we can assume it is galactic
# and convert it to RA/dec.
pixel_angpos = csiborgtools.field.nside2radec(nside)
RA, dec = csiborgtools.galactic_to_radec(*pixel_angpos.T)
pixel_angpos = np.vstack([RA, dec]).T
npix = len(pixel_angpos)
Rmax = np.asanyarray(dist_ranges).reshape(-1).max()
dr = 0.5 * boxsize / grid
print(f"{'R_max:':<20} {Rmax} Mpc / h", flush=True)
print(f"{'dr:':<20} {dr} Mpc / h", flush=True)
for nsim in nsims:
print(f"Interpolating at {npix} pixel for simulation {nsim}...",
flush=True)
field = get_field(simname, nsim, field_kind, MAS, grid)
rdist, finterp = csiborgtools.field.make_sky(
field, pixel_angpos, Rmax, dr, boxsize, return_full=True,
interpolation_method="linear")
with File(fname, "a") as f:
grp = f.create_group(f"nsim_{nsim}")
for n in range(len(dist_ranges)):
dmin, dmax = dist_ranges[n]
k_start = np.searchsorted(rdist, dmin)
k_end = np.searchsorted(rdist, dmax)
r = rdist[k_start:k_end + 1]
y = r**2 * finterp[:, k_start:k_end + 1]
skymap = np.trapz(y, r, axis=-1) / np.trapz(r**2, r)
if normalize_to_overdensity:
skymap /= matter_density
skymap -= 1
grp.create_dataset(f"dist_range_{n}", data=skymap)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--simname", type=str, help="Simulation name.")
args = parser.parse_args()
fdir = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_projected"
dx = 25
dist_ranges = [[0, n * dx] for n in range(1, 5)]
dist_ranges += [[n * dx, (n + 1) * dx] for n in range(0, 5)]
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(args.simname)
print(f"{'Num. sims:':<20} {len(nsims)}", flush=True)
MAS = "SPH"
grid = 1024
nside = 128
field_kind = "density"
volume_weight = True
main(args.simname, nsims, field_kind, nside, dist_ranges, MAS, grid,
volume_weight, fdir)

View file

@ -0,0 +1,26 @@
nthreads=1
memory=64
on_login=${1}
simname=${2}
queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="field_projected.py"
if [ "$on_login" != "1" ] && [ "$on_login" != "0" ]
then
echo "'on_login' (1) must be either 0 or 1."
exit 1
fi
pythoncm="$env $file --simname $simname"
if [ $on_login -eq 1 ]; then
echo $pythoncm
$pythoncm
else
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
eval $cm
fi

View file

@ -1,158 +0,0 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
NOTE: The script is far from finished or written well.
"""
from os.path import join
import numpy as np
import csiborgtools
from h5py import File
from sklearn.neighbors import NearestNeighbors
from numba import jit
from scipy.stats import binned_statistic
###
def find_indxs(rtree, r, radius):
"""
Find the indices of points that are within a given radius of a given
point `r`.
"""
if isinstance(r, (int, float)):
r = np.array(r)
return rtree.radius_neighbors(
r.reshape(-1, 1), radius=radius, return_distance=False, )[0]
@jit(nopython=True)
def dot_product_norm(x1_norm, x2_norm):
"""Dot product of two normalised 1D vectors."""
return x1_norm[0] * x2_norm[0] + x1_norm[1] * x2_norm[1] + x1_norm[2] * x2_norm[2] # noqa
@jit(nopython=True)
def get_angdist_vrad_product(i_comb, j_comb, pos_norm, vrad, r, rbin_i, rbin_j):
# TODO: Add itself?
len_i = len(i_comb)
len_j = len(j_comb)
cos_angdist_values = np.full(len_i * len_j, np.nan)
vrad_product = np.full(len_i * len_j, np.nan)
weights = np.full(len_i * len_j, np.nan)
k = 0
for i in range(len_i):
pos_norm_i = pos_norm[i_comb[i]]
vrad_i = vrad[i_comb[i]]
w_i = (rbin_i / r[i_comb[i]])**2
for j in range(len_j):
cos_angdist_values[k] = dot_product_norm(pos_norm_i, pos_norm[j_comb[j]])
# Product of the peculiar velocities
vrad_product[k] = vrad_i * vrad[j_comb[j]]
# Weight the product
w = w_i * (rbin_j / r[j_comb[j]])**2
vrad_product[k] *= w
weights[k] = w
k += 1
return cos_angdist_values, vrad_product, weights
def main(out_summed_product, out_weights, ri, rj, angular_bins, pos, vel, observer, rmax):
# Centre the positions at the observer
pos = np.copy(pos) - observer
r = np.linalg.norm(pos, axis=1)
mask = r < rmax
# Select only the haloes within the radial range
pos = pos[mask]
vel = vel[mask]
r = r[mask]
# Create a KDTree for the radial positions
rtree = NearestNeighbors().fit(r.reshape(-1, 1))
# Calculate the radial velocity and the normalised position vector
pos_norm = pos / r[:, None]
vrad = np.sum(vel * pos_norm, axis=1)
# TODO: eventually here loop over the radii
# for ....
dr = 2.5
i_indxs = find_indxs(rtree, ri, radius=dr)
j_indxs = find_indxs(rtree, rj, radius=dr)
# Calculate the cosine of the angular distance and the product of the
# radial velocities for each pair of points.
cos_angdist, vrad_product, weights = get_angdist_vrad_product(
i_indxs, j_indxs, pos_norm, vrad, r, ri, rj)
out_summed_product += binned_statistic(
cos_angdist, vrad_product, bins=angular_bins, statistic="sum")[0]
out_weights += binned_statistic(
cos_angdist, weights, bins=angular_bins, statistic="sum")[0]
return out_summed_product, out_weights
if __name__ == "__main__":
fdir = "/mnt/extraspace/rstiskalek/BBF/Quijote_C_ij"
rmax = 150
nradial = 20
nangular = 40
ncatalogue = 1
# NOTE check this
radial_bins = np.linspace(0, rmax, nradial + 1)
angular_bins = np.linspace(-1, 1, nangular + 1)
summed_product = np.zeros(nangular)
weights = np.zeros(nangular)
fiducial_observers = csiborgtools.read.fiducial_observers(1000, rmax)
ri = 100
rj = 120
# for i in trange(ncatalogue, desc="Catalogues"):
for i in [30]:
cat = csiborgtools.read.QuijoteCatalogue(i)
for j in range(len(fiducial_observers)):
# Loop over all the fiducial observers in this simulation
observer = fiducial_observers[j]
summed_product, weights = main(
summed_product, weights, ri, rj, angular_bins,
cat["cartesian_pos"], cat["cartesian_vel"], observer, rmax)
# TODO: Save
fname = join(fdir, "test.h5")
print(f"Saving to `{fname}`.")
with File(fname, 'w') as f:
f.create_dataset("summed_product", data=summed_product)
f.create_dataset("weights", data=weights)
f.create_dataset("angular_bins", data=angular_bins)