mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 23:28:03 +00:00
9e4b34f579
* Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
50 KiB
50 KiB
In [1]:
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
try:
import csiborgtools
except ModuleNotFoundError:
print("not found")
import sys
sys.path.append("../")
import csiborgtools
import utils
import joblib
from os.path import join
%load_ext autoreload
%autoreload 2
from gc import collect
In [2]:
surv = utils.SDSS()()
X = np.vstack([surv[p] for p in ("DIST", "RA", "DEC")]).T
X = X.astype(np.float32)
In [3]:
particles = np.load("/mnt/extraspace/rstiskalek/csiborg/scratch/particles.npy")
In [4]:
grid = 256
length = 677.05
paths = csiborgtools.read.Paths()
paths.set_info(7444, paths.get_maximum_snapshot(7444))
box = csiborgtools.units.CSiBORGBox(paths)
MAS = "CIC"
field = csiborgtools.field.DensityField(particles, length, box, MAS)
In [27]:
x0 = field.potential_field(grid, 2)
In [28]:
x1 = field.potential_fieldal_field(grid)
In [34]:
plt.figure()
plt.imshow(np.mean(x0, axis=2) - np.mean(x1, axis=2))
plt.show()
In [33]:
plt.figure()
plt.imshow(np.mean(x1, axis=2))
plt.show()
In [ ]:
In [ ]:
delta = field.overdensity_field(grid, verbose=True)
In [ ]:
field.evaluate_sky(delta, pos=X, isdeg=True)
In [ ]:
dtype = {"names": ['x', 'y'], "formats": [float, float]}
In [ ]:
z = np.zeros((2, 2), dtype=dtype)
In [ ]:
z['x']
In [ ]:
T = field.tensor_field(grid)
In [ ]:
Teval = field.evaluate_sky(T.T00, T.T01, T.T02, T.T11, T.T12, T.T22, pos=X, isdeg=True)
In [ ]:
field.tensor_field_eigvals(*Teval)
In [ ]:
In [ ]:
np.sort()
In [ ]:
Teval[0].shape
In [ ]:
a
In [ ]:
Z = np.zeros((N, 3, 3), dtype=np.float32)
Z[:, 0, 0] = Teval[0]
Z[:, 0, 1] = Teval[1]
Z[:, 0, 2] = Teval[2]
Z[:, 1, 1] = Teval[3]
Z[:, 1, 2] = Teval[4]
Z[:, 2, 2] = Teval[5]
Zall = np.zeros((N, 3, 3), dtype=np.float32)
Zall[:, 0, 0] = Teval[0]
Zall[:, 0, 1] = Teval[1]
Zall[:, 1, 0] = Teval[1]
Zall[:, 0, 2] = Teval[2]
Zall[:, 2, 0] = Teval[2]
Zall[:, 1, 1] = Teval[3]
Zall[:, 1, 2] = Teval[4]
Zall[:, 2, 1] = Teval[4]
Zall[:, 2, 2] = Teval[5]
In [ ]:
np.linalg.eigvalsh(Z[120, ...], 'U')
In [ ]:
np.linalg.eigvals(Zall[120, ...])
In [ ]:
out = field.evaluate_sky(g.gx, g.gy, g.gz, pos=X)
In [ ]:
out
In [ ]:
plt.figure()
plt.hist(np.log10(np.linalg.norm(out, axis=0)), bins="auto")
plt.show()
In [ ]: