csiborgtools/scripts_plots/plot_knn.py
Richard Stiskalek 2185846e90
CDF for nearest neighbour (#63)
* Updat ebounds

* fix mistake

* add plot script

* fix which sims

* Add Poisson

* Just docs

* Hide things to __main__

* Rename paths

* Move old script

* Remove radpos

* Paths renaming

* Paths renaming

* Remove trunk stuff

* Add import

* Add nearest neighbour search

* Add Quijote fiducial indices

* Add final snapshot matching

* Add fiducial observer selection

* add boxsizes

* Add reading functions

* Little stuff

* Bring back the fiducial observer

* Add arguments

* Add quijote paths

* Add notes

* Get this running

* Add yaml

* Remove Poisson stuff

* Get the 2PCF script running

* Add not finished htings

* Remove comment

* Verbosity only on 0th rank!

* Update plotting style

* Add nearest neighbour CDF

* Save radial distance too

* Add centres

* Add basic plotting
2023-05-21 22:46:28 +01:00

103 lines
3.9 KiB
Python

# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from os.path import join
import matplotlib.pyplot as plt
import numpy
import scienceplots # noqa
import utils
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
###############################################################################
# Probability of matching a reference simulation halo #
###############################################################################
def plot_knn(runname):
print(f"Plotting kNN CDF for {runname}.")
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
reader = csiborgtools.read.kNNCDFReader(paths)
with plt.style.context(utils.mplstyle):
plt.figure()
# Quijote kNN
rs, cdf, ndensity = reader.read("quijote", runname, kind="auto")
pk = reader.prob_k(cdf)
pk_poisson = reader.poisson_prob_k(rs, numpy.arange(pk.shape[1]),
ndensity)
for k in range(3):
mu = numpy.mean(pk[:, k, :], axis=0)
std = numpy.std(pk[:, k, :], axis=0)
plt.plot(rs, mu, label=r"$k = {}$, Quijote".format(k + 1),
c=cols[k % len(cols)])
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
# color=cols[k % len(cols)], zorder=0)
mu = numpy.mean(pk_poisson[:, k, :], axis=0)
std = numpy.std(pk_poisson[:, k, :], axis=0)
plt.plot(rs, mu, c=cols[k % len(cols)], ls="dashed",
label=r"$k = {}$, Poisson analytical".format(k + 1))
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
# color=cols[k % len(cols)], zorder=0, hatch="\\")
# Quijote poisson kNN
rs, cdf, ndensity = reader.read("quijote", "mass003_poisson",
kind="auto")
pk = reader.prob_k(cdf)
for k in range(3):
mu = numpy.mean(pk[:, k, :], axis=0)
std = numpy.std(pk[:, k, :], axis=0)
plt.plot(rs, mu, label=r"$k = {}$, Poisson Quijote".format(k + 1),
c=cols[k % len(cols)], ls="dotted")
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
# color=cols[k % len(cols)], zorder=0)
# # CSiBORG kNN
# rs, cdf, ndensity = reader.read("csiborg", runname, kind="auto")
# pk = reader.mean_prob_k(cdf)
# for k in range(2):
# mu = pk[k, :, 0]
# std = pk[k, :, 1]
# plt.plot(rs, mu, ls="--", c=cols[k % len(cols)])
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15, hatch="\\",
# color=cols[k % len(cols)], zorder=0)
plt.legend()
plt.xlabel(r"$r~[\mathrm{Mpc}]$")
plt.ylabel(r"$P(k | V = 4 \pi r^3 / 3)$")
for ext in ["png"]:
fout = join(utils.fout, f"knn_{runname}.{ext}")
print("Saving to `{fout}`.".format(fout=fout))
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
plt.close()
if __name__ == "__main__":
plot_knn("mass003")