mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:28:02 +00:00
104 lines
3.9 KiB
Python
104 lines
3.9 KiB
Python
|
# Copyright (C) 2023 Richard Stiskalek
|
||
|
# This program is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU General Public License as published by the
|
||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||
|
# option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful, but
|
||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||
|
# Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along
|
||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
|
||
|
from os.path import join
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy
|
||
|
|
||
|
import scienceplots # noqa
|
||
|
import utils
|
||
|
|
||
|
try:
|
||
|
import csiborgtools
|
||
|
except ModuleNotFoundError:
|
||
|
import sys
|
||
|
sys.path.append("../")
|
||
|
import csiborgtools
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Probability of matching a reference simulation halo #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def plot_knn(runname):
|
||
|
print(f"Plotting kNN CDF for {runname}.")
|
||
|
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
|
||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||
|
reader = csiborgtools.read.kNNCDFReader(paths)
|
||
|
|
||
|
with plt.style.context(utils.mplstyle):
|
||
|
plt.figure()
|
||
|
|
||
|
# Quijote kNN
|
||
|
rs, cdf, ndensity = reader.read("quijote", runname, kind="auto")
|
||
|
pk = reader.prob_k(cdf)
|
||
|
pk_poisson = reader.poisson_prob_k(rs, numpy.arange(pk.shape[1]),
|
||
|
ndensity)
|
||
|
|
||
|
for k in range(3):
|
||
|
mu = numpy.mean(pk[:, k, :], axis=0)
|
||
|
std = numpy.std(pk[:, k, :], axis=0)
|
||
|
plt.plot(rs, mu, label=r"$k = {}$, Quijote".format(k + 1),
|
||
|
c=cols[k % len(cols)])
|
||
|
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
|
||
|
# color=cols[k % len(cols)], zorder=0)
|
||
|
|
||
|
mu = numpy.mean(pk_poisson[:, k, :], axis=0)
|
||
|
std = numpy.std(pk_poisson[:, k, :], axis=0)
|
||
|
plt.plot(rs, mu, c=cols[k % len(cols)], ls="dashed",
|
||
|
label=r"$k = {}$, Poisson analytical".format(k + 1))
|
||
|
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
|
||
|
# color=cols[k % len(cols)], zorder=0, hatch="\\")
|
||
|
|
||
|
# Quijote poisson kNN
|
||
|
rs, cdf, ndensity = reader.read("quijote", "mass003_poisson",
|
||
|
kind="auto")
|
||
|
pk = reader.prob_k(cdf)
|
||
|
|
||
|
for k in range(3):
|
||
|
mu = numpy.mean(pk[:, k, :], axis=0)
|
||
|
std = numpy.std(pk[:, k, :], axis=0)
|
||
|
plt.plot(rs, mu, label=r"$k = {}$, Poisson Quijote".format(k + 1),
|
||
|
c=cols[k % len(cols)], ls="dotted")
|
||
|
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15,
|
||
|
# color=cols[k % len(cols)], zorder=0)
|
||
|
|
||
|
# # CSiBORG kNN
|
||
|
# rs, cdf, ndensity = reader.read("csiborg", runname, kind="auto")
|
||
|
# pk = reader.mean_prob_k(cdf)
|
||
|
# for k in range(2):
|
||
|
# mu = pk[k, :, 0]
|
||
|
# std = pk[k, :, 1]
|
||
|
# plt.plot(rs, mu, ls="--", c=cols[k % len(cols)])
|
||
|
# plt.fill_between(rs, mu - std, mu + std, alpha=0.15, hatch="\\",
|
||
|
# color=cols[k % len(cols)], zorder=0)
|
||
|
|
||
|
plt.legend()
|
||
|
plt.xlabel(r"$r~[\mathrm{Mpc}]$")
|
||
|
plt.ylabel(r"$P(k | V = 4 \pi r^3 / 3)$")
|
||
|
|
||
|
for ext in ["png"]:
|
||
|
fout = join(utils.fout, f"knn_{runname}.{ext}")
|
||
|
print("Saving to `{fout}`.".format(fout=fout))
|
||
|
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||
|
plt.close()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
plot_knn("mass003")
|