csiborgtools/scripts/field_prop/field_prop.py
Richard Stiskalek d578c71b83
LSS projected basics (#140)
* Move files

* Move files

* Add galactic to RA/dec

* Update sky maps

* Add projected fields

* Remove old import

* Quick update

* Add IO

* Add imports

* Update imports

* Add basic file
2024-08-14 13:02:38 +02:00

349 lines
13 KiB
Python

# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""MPI script to calculate the various fields."""
from argparse import ArgumentParser
from datetime import datetime
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
import csiborgtools
from utils import get_nsims
###############################################################################
# Density field #
###############################################################################
def density_field(nsim, parser_args):
"""
Calculate and save the density field from the particle positions and
masses.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Command line arguments.
Returns
-------
density_field : 3-dimensional array
"""
if parser_args.MAS == "SPH":
raise NotImplementedError("SPH is not implemented here. Use cosmotool")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, parser_args.simname))
# Read in the particle coordinates and masses
if parser_args.simname == "csiborg1":
snapshot = csiborgtools.read.CSiBORG1Snapshot(nsim, nsnap, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
snapshot = csiborgtools.read.CSiBORG2Snapshot(nsim, nsnap, paths, kind)
elif parser_args.simname == "quijote":
snapshot = csiborgtools.read.QuijoteSnapshot(nsim, nsnap, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
pos = snapshot.coordinates()
mass = snapshot.masses()
# Run the field generator
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
gen = csiborgtools.field.DensityField(boxsize, parser_args.MAS)
field = gen(pos, mass, parser_args.grid)
fout = paths.field("density", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Velocity field #
###############################################################################
def velocity_field(nsim, parser_args):
"""
Calculate and save the velocity field from the particle positions,
velocities and masses.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Command line arguments.
Returns
-------
velocity_field : 4-dimensional array
"""
if parser_args.MAS == "SPH":
raise NotImplementedError("SPH is not implemented here. Use cosmotool")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, parser_args.simname))
if parser_args.simname == "csiborg1":
snapshot = csiborgtools.read.CSiBORG1Snapshot(nsim, nsnap, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
snapshot = csiborgtools.read.CSiBORG2Snapshot(nsim, nsnap, kind, paths)
elif parser_args.simname == "quijote":
snapshot = csiborgtools.read.QuijoteSnapshot(nsim, nsnap, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
pos = snapshot.coordinates()
vel = snapshot.velocities()
mass = snapshot.masses()
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
gen = csiborgtools.field.VelocityField(boxsize, parser_args.MAS)
field = gen(pos, vel, mass, parser_args.grid)
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Radial velocity field #
###############################################################################
def radvel_field(nsim, parser_args):
"""
Calculate and save the radial velocity field.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Command line arguments.
Returns
-------
radvel_field : 3-dimensional array
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if parser_args.simname == "csiborg1":
field = csiborgtools.read.CSiBORG1Field(nsim, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
field = csiborgtools.read.CSiBORG2Field(nsim, kind, paths)
elif parser_args.simname == "quijote":
field = csiborgtools.read.QuijoteField(nsim, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
vel = field.velocity_field(parser_args.MAS, parser_args.grid)
observer_velocity = csiborgtools.field.observer_peculiar_velocity(vel)
radvel = csiborgtools.field.radial_velocity(vel, observer_velocity)
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, radvel)
return field
def observer_peculiar_velocity(nsim, parser_args):
"""
Calculate the peculiar velocity of an observer in the centre of the box
for several hard-coded smoothing scales.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Command line arguments.
Returns
-------
observer_vp : 4-dimensional array
"""
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
# NOTE these values are hard-coded.
smooth_scales = numpy.array([0., 2.0, 4.0, 8.0, 16.])
smooth_scales /= boxsize
if parser_args.simname == "csiborg1":
field = csiborgtools.read.CSiBORG1Field(nsim, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
field = csiborgtools.read.CSiBORG2Field(nsim, paths, kind)
elif parser_args.simname == "quijote":
field = csiborgtools.read.QuijoteField(nsim, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
vel = field.velocity_field(parser_args.MAS, parser_args.grid)
observer_vp = csiborgtools.field.observer_peculiar_velocity(
vel, smooth_scales)
fout = paths.observer_peculiar_velocity(parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"Saving to ... `{fout}`")
numpy.savez(fout, smooth_scales=smooth_scales, observer_vp=observer_vp)
return observer_vp
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. `-1` for all simulations.")
parser.add_argument("--simname", type=str, help="Simulation name.")
parser.add_argument("--kind", type=str,
choices=["density", "velocity", "radvel", "observer_vp"], # noqa
help="What derived field to calculate?")
parser.add_argument("--MAS", type=str,
choices=["NGP", "CIC", "TSC", "PCS", "SPH"],
help="Mass assignment scheme.")
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser_args = parser.parse_args()
comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(parser_args, paths)
def main(nsim):
if parser_args.kind == "density":
density_field(nsim, parser_args)
elif parser_args.kind == "velocity":
velocity_field(nsim, parser_args)
elif parser_args.kind == "radvel":
radvel_field(nsim, parser_args)
elif parser_args.kind == "observer_vp":
observer_peculiar_velocity(nsim, parser_args)
else:
raise RuntimeError(f"Field {parser_args.kind} is not implemented.")
work_delegation(main, nsims, comm, master_verbose=True)
# def potential_field(nsim, parser_args, to_save=True):
# """
# Calculate the potential field in the CSiBORG simulation.
# """
# paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# nsnap = max(paths.get_snapshots(nsim, "csiborg"))
# box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
#
# if not parser_args.in_rsp:
# rho = numpy.load(paths.field(
# "density", parser_args.MAS, parser_args.grid, nsim,
# in_rsp=False))
# density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
# rho = density_gen.overdensity_field(rho)
#
# gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
# field = gen(rho)
# else:
# field = numpy.load(paths.field(
# "potential", parser_args.MAS, parser_args.grid, nsim, False))
# radvel_field = numpy.load(paths.field(
# "radvel", parser_args.MAS, parser_args.grid, nsim, False))
#
# field = csiborgtools.field.field2rsp(field, radvel_field, box,
# parser_args.MAS)
#
# if to_save:
# fout = paths.field(parser_args.kind, parser_args.MAS,
# parser_args.grid,
# nsim, parser_args.in_rsp)
# print(f"{datetime.now()}: saving output to `{fout}`.")
# numpy.save(fout, field)
# return field
#
#
# #############################################################################
# # Environment classification #
# #############################################################################
#
#
# def environment_field(nsim, parser_args, to_save=True):
# """
# Calculate the environmental classification in the CSiBORG simulation.
# """
# paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# nsnap = max(paths.get_snapshots(nsim, "csiborg"))
# box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
#
# rho = numpy.load(paths.field(
# "density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
# density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
# rho = density_gen.overdensity_field(rho)
#
# if parser_args.smooth_scale > 0.0:
# rho = csiborgtools.field.smoothen_field(
# rho, parser_args.smooth_scale, box.box2mpc(1.))
#
# gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
# field = gen(rho)
#
# del rho
# collect()
#
# if parser_args.in_rsp:
# radvel_field = numpy.load(paths.field(
# "radvel", parser_args.MAS, parser_args.grid, nsim, False))
# args = (radvel_field, box, parser_args.MAS)
#
# field.T00 = csiborgtools.field.field2rsp(field.T00, *args)
# field.T11 = csiborgtools.field.field2rsp(field.T11, *args)
# field.T22 = csiborgtools.field.field2rsp(field.T22, *args)
# field.T01 = csiborgtools.field.field2rsp(field.T01, *args)
# field.T02 = csiborgtools.field.field2rsp(field.T02, *args)
# field.T12 = csiborgtools.field.field2rsp(field.T12, *args)
#
# del radvel_field
# collect()
#
# eigvals = gen.tensor_field_eigvals(field)
#
# del field
# collect()
#
# env = gen.eigvals_to_environment(eigvals)
#
# if to_save:
# fout = paths.field("environment", parser_args.MAS, parser_args.grid,
# nsim, parser_args.in_rsp,
# parser_args.smooth_scale)
# print(f"{datetime.now()}: saving output to `{fout}`.")
# numpy.save(fout, env)
# return env