mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:18:01 +00:00
ee222cd010
* Update nb * Update script * Update script * Rename * Update script * Update script * Remove warning * Ignore minors when extracting MAH * Fix paths bug * Move notebooks * Move files * Rename and delete things * Rename file * Move file * Rename things * Remove old print statement * Add basic MAH plot * Add random MAH path * Output snapshot numbers * Add MAH random extraction * Fix redshift bug * Edit script * Add extracting random MAH * Little updates * Add CB2 redshift * Add some caching * Add diagnostic plots * Add caching * Minor updates * Update nb * Update notebook * Update script * Add Sorce randoms * Add CB2 varysmall * Update nb * Update nb * Update nb * Use catalogue HMF * Move definition of radec2galactic * Update nb * Update import * Update import * Add galatic coords to catalogues * Update nb
198 KiB
198 KiB
In [1]:
from os.path import join
import csiborgtools
import matplotlib.pyplot as plt
import numpy
import scienceplots # noqa
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function # noqa
import plt_utils
%load_ext autoreload
%autoreload 2
Field evaluated at radial shells¶
In [2]:
# TODO: This is a little dodgy
def plot_field_shells(field, MAS, grid, to_save=True):
folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells"
# with plt.style.context("notebook"):
if True:
cols = plt.rcParams['axes.prop_cycle'].by_key()['color']
lw = plt.rcParams['lines.linewidth']
plt.figure()
# CSiBORG2 main
fname = join(folder, f"csiborg2_main_{field}_{MAS}_{grid}.npz")
file = numpy.load(fname)
dist, mean = file["distances"], file["mean"]
mean /= dist
mean /= 70
for i in range(len(mean)):
plt.plot(dist, mean[i], c=cols[0], label="CSiBORG" if i == 0 else None)
# # BORG2
# fname = join(folder, f"borg2_{field}_{MAS}_{grid}.npz")
# file = numpy.load(fname)
# dist, mean = file["distances"], file["mean"]
# for i in range(len(mean)):
# plt.plot(dist, mean[i], c=cols[2], label="BORG" if i == 0 else None)
# # CSiBORG2 random
# fname = join(folder, f"csiborg2_random_{field}_{MAS}_{grid}.npz")
# file = numpy.load(fname)
# dist, mean = file["distances"], file["mean"]
# mu = numpy.mean(mean, axis=0)
# std = numpy.std(mean, axis=0)
# plt.fill_between(dist, mu - std, mu + std, alpha=1/3, color=cols[1])
# for i in range(len(mean)):
# plt.plot(dist, mean[i], c=cols[1], label="Random" if i == 0 else None, zorder=0, lw=lw/2)
# Plot settings
plt.legend(loc="lower right")
plt.xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
if field == "radvel":
plt.ylabel(r"$\langle v_r \rangle ~ [\mathrm{km} / s]$")
plt.axhline(0, c="k", ls="--",)
plt.ylim(-0.1, 0.1)
plt.xscale("log")
elif field == "overdensity":
plt.ylim(-0.5, 0.5)
plt.axhline(0, c="k", ls="--",)
# plt.xlim(0, 200)
plt.ylabel(r"$\langle \delta_r \rangle$")
# plt.axhline(-0.1, c="k", ls="--")
elif field == "density":
plt.axhline(277.5 * 0.304, c="k", ls="--",)
plt.ylim(50, 100)
plt.xlim(0, dist.max())
# plt.xlim(0, 100)
if to_save:
fout = join(plt_utils.fout, f"field_shells_{field}_{MAS}_{grid}.png")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.show()
In [199]:
plot_field_shells("radvel", "SPH", 1024, False)
Enclosed mass¶
In [2]:
a
In [21]:
def plot_enclosed_overdensity(to_save=True):
with plt.style.context("science"):
# if True:
cols = plt.rcParams['axes.prop_cycle'].by_key()['color']
fig, axs = plt.subplots(2, 1, sharex=True, figsize=(2 * 3.5, 2 * 1.5 * 2.625), gridspec_kw={"height_ratios": [1, 0.8]})
fig.subplots_adjust(wspace=0, hspace=0)
# CSiBORG2 main
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg2_main.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.3111 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg2_main")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
print(f"CSiBORG2_main overdensity within 135 Mpc / h: {numpy.mean(density135)} +- {numpy.std(density135)}")
print(f"CSiBORG2_main density of the entire box: {numpy.mean(densitytot)} +- {numpy.std(densitytot)}")
mu = numpy.mean(density, axis=0)
y = numpy.copy(density)
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[0], alpha=0.25, ls="dashed")
y[i] /= mu
y[i] -= 1
axs[0].plot(dist, mu, c=cols[0], label="CB2_main")
mu2, std2 = numpy.mean(y, axis=0), numpy.std(y, axis=0)
axs[1].fill_between(dist, mu2 - std2, mu2 + std2, alpha=0.5, color=cols[0])
# CSiBORG2 varysmall
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg2_varysmall.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.3111 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg2_varysmall")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
print(f"CSiBORG2_varysmall overdensity within 135 Mpc / h: {numpy.mean(density135)} +- {numpy.std(density135)}")
print(f"CSiBORG2_varysmall density of the entire box: {numpy.mean(densitytot)} +- {numpy.std(densitytot)}")
mu = numpy.mean(density, axis=0)
y = numpy.copy(density)
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[2], alpha=0.25, ls="dashed")
y[i] /= mu
y[i] -= 1
axs[0].plot(dist, mu, c=cols[2], label="CB2_varysmall")
mu2, std2 = numpy.mean(y, axis=0), numpy.std(y, axis=0)
axs[1].fill_between(dist, mu2 - std2, mu2 + std2, alpha=0.5, color=cols[2])
# CSiBORG2 random
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg2_random.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.3111 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg2_random")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
print(f"CSiBORG2_random overdensity within 135 Mpc / h: {numpy.mean(density135)} +- {numpy.std(density135)}")
print(f"CSiBORG2_random density of the entire box: {numpy.mean(densitytot)} +- {numpy.std(densitytot)}")
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[1], alpha=0.5, ls="dashed", zorder=0)
mu = numpy.mean(density, axis=0)
std = numpy.std(density, axis=0)
axs[0].plot(dist, mu, c=cols[1], label="CB2_random", zorder=0)
axs[0].fill_between(dist, mu - std, mu + std, alpha=1/3, color=cols[1], zorder=0)
# CSiBORG1
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg1.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.307 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg1")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
print(f"CSiBORG1 overdensity within 135 Mpc / h: {numpy.mean(density135)} +- {numpy.std(density135)}")
print(f"CSiBORG1 density of the entire box: {numpy.mean(densitytot)} +- {numpy.std(densitytot)}")
mu = numpy.mean(density, axis=0)
y = numpy.copy(density)
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[3], alpha=0.25, ls="dashed", zorder=0.5)
y[i] /= mu
y[i] -= 1
axs[0].plot(dist, mu, c=cols[3], label="CB1", zorder=0.5)
mu2, std2 = numpy.mean(y, axis=0), numpy.std(y, axis=0)
axs[1].fill_between(dist, mu2 - std2, mu2 + std2, alpha=0.5, color=cols[3], zorder=0.5)
# BORG2
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_borg2.npz")
V = d["enclosed_volume"]
dist = d["distances"]
rho_mean = 0.3111 * 277.53662724583074
density = d["enclosed_mass"] / V / rho_mean - 1
mu = numpy.mean(density, axis=0)
y = numpy.copy(density)
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[4], alpha=0.25, ls="dashed", zorder=0.5)
y[i] /= mu
y[i] -= 1
axs[0].plot(dist, mu, c=cols[4], label="B2", zorder=0.5)
mu2, std2 = numpy.mean(y, axis=0), numpy.std(y, axis=0)
axs[1].fill_between(dist, mu2 - std2, mu2 + std2, alpha=0.5, color=cols[4], zorder=0.5)
# BORG1
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_borg1.npz")
V = d["enclosed_volume"]
dist = d["distances"]
rho_mean = 0.307 * 277.53662724583074
density = d["enclosed_mass"] / V / rho_mean - 1
mu = numpy.mean(density, axis=0)
y = numpy.copy(density)
for i in range(len(density)):
axs[0].plot(dist, density[i], c=cols[4], alpha=0.25, ls="dashed", zorder=0.5)
y[i] /= mu
y[i] -= 1
axs[0].plot(dist, mu, c=cols[4], label="B2", zorder=0.5)
mu2, std2 = numpy.mean(y, axis=0), numpy.std(y, axis=0)
axs[1].fill_between(dist, mu2 - std2, mu2 + std2, alpha=0.5, color=cols[4], zorder=0.5)
# Plot settings
axs[0].set_ylim(-0.15, 0.15)
axs[1].set_ylim(-0.4, 0.4)
axs[1].set_xlim(-1, dist.max())
axs[1].set_xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
axs[0].set_ylabel(r"$\delta_r$")
axs[1].set_ylabel(r"$\delta_r / \langle \delta_r \rangle - 1$")
axs[0].legend(fontsize="small")
for i in range(2):
axs[i].axvline(135, c="k", ls="--")
fig.tight_layout(h_pad=0)
if to_save:
fout = join(plt_utils.fout, f"enclosed_overdensity.png")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
fig.show()
In [22]:
plot_enclosed_overdensity(True)
In [30]:
# CSiBORG1
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg1.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.307 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg1")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
density135_csiborg1 = density135
# CSiBORG2 main
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg2_main.npz")
V = 4 / 3 * numpy.pi * d["distances"]**3
V35 = 4 / 3 * numpy.pi * 135**3
rho_mean = 0.3111 * 277.53662724583074
boxsize = csiborgtools.simname2boxsize("csiborg2_main")
dist = d["distances"]
density = d["enclosed_mass"] / V * 1e-9 / rho_mean - 1
density135 = d["mass135"] / V35 * 1e-9 / rho_mean - 1
densitytot = d["masstot"] / boxsize**3 * 1e-9 / rho_mean - 1
density135_csiborg2 = density135
In [39]:
numpy.std(density135_csiborg1), numpy.std(density135_csiborg2)
Out[39]:
In [41]:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
paths.get_ics("csiborg2_main")
Out[41]:
In [37]:
plt.figure()
plt.hist(density135_csiborg1, bins="auto", histtype="step", label="CB1", density=True)
plt.hist(density135_csiborg2, bins="auto", histtype="step", label="CB2", density=True)
plt.legend()
plt.show()
In [ ]:
In [29]:
x = numpy.linspace(0, 1, 10)
numpy.vstack([x, x, x]).T
Out[29]:
In [16]:
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_borg2.npz")
V = d["enclosed_volume"]
dist = d["distances"]
rho_mean = 0.3111 * 277.53662724583074
density = d["enclosed_mass"] / V / rho_mean - 1
Bulk flow¶
In [118]:
def process_bulkflow_amplitude(cumulative_velocity, subtract_observer):
if isinstance(subtract_observer, bool):
if subtract_observer:
subtract_observer = 0
else:
return numpy.linalg.norm(cumulative_velocity, axis=-1)
if not isinstance(subtract_observer, int):
raise TypeError("Incorrect type for `subtract_observer`.")
for i in range(len(cumulative_velocity)):
for j in range(3):
cumulative_velocity[i, :, j] -= cumulative_velocity[i, subtract_observer, j]
return numpy.linalg.norm(cumulative_velocity, axis=-1)
def plot_bulkflow_amplitude(subtract_observer=False, to_save=True):
with plt.style.context("science"):
# if True:
plt.figure()
# CSiBORG2 main
d = numpy.load("/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_csiborg2_main.npz")
dist = d["distances"]
cumulative_velocity = d["cumulative_velocity"]
cumulative_velocity_amplitude = process_bulkflow_amplitude(cumulative_velocity, subtract_observer)
for i in range(len(cumulative_velocity_amplitude)):
plt.plot(dist, cumulative_velocity_amplitude[i], c="C0", alpha=0.25, ls="dashed")
plt.plot(dist, numpy.mean(cumulative_velocity_amplitude, axis=0), c="C0", label="CSiBORG2")
plt.axvline(135, c="k", ls="--")
plt.xlabel(r"$r ~ [\mathrm{Mpc} / h]$")
plt.ylabel(r"$\langle U \rangle ~ [\mathrm{km} / \mathrm{s}]$")
plt.legend()
if to_save:
fout = join(plt_utils.fout, f"enclosed_flow.png")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.show()
In [119]:
plot_bulkflow_amplitude(False, True)
In [ ]: