mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 04:48:03 +00:00
779f2e76ac
* Update redshift reading * Add helio to CMB redshift * Update imports * Update nb * Run for Quijote * Add script * Update * Update .gitignore * Update imports * Add Peery estimator * Add bulk flow scripts * Update typs * Add comment * Add blank space * Update submission script * Update description * Add barriers * Update nb * Update nb * Rename script * Move to old * Update imports * Add nb * Update script * Fix catalogue key * Update script * Update submit * Update comment * Update .gitignore * Update nb * Update for stationary obsrevers * Update submission * Add nb * Add better verbose control * Update nb * Update submit * Update nb * Add SN errors * Add draft of the script * Update verbosity flags * Add submission script * Debug script * Quickfix * Remove comment * Update nb * Update submission * Update nb * Processed UPGLADE
41 KiB
41 KiB
$P(k, H_0)$¶
Quick notebook to see how the power spectrum depends on $H_0$.
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import camb
from camb import model
%matplotlib inline
In [19]:
def get_pk(h):
pars = camb.CAMBparams()
pars.set_cosmology(H0=h*100, ombh2=0.04825 * h**2, omch2=(0.307 - 0.04825) * h**2)
pars.InitPower.set_params(ns=0.9611)
pars.set_matter_power(redshifts=[0.], kmax=40)
#Non-Linear spectra (Halofit)
pars.NonLinear = model.NonLinear_both
results = camb.get_results(pars)
results.calc_power_spectra(pars)
kh_nonlin, z_nonlin, pk_nonlin = results.get_matter_power_spectrum(minkh=1e-3, maxkh=50, npoints = 200)
return kh_nonlin, pk_nonlin[0]
kh_nonlin, pk_nonlin_reference = get_pk(0.705)
In [25]:
plt.figure()
for h in [0.65, 0.70, 0.75]:
__, pk = get_pk(h)
plt.plot(kh_nonlnie, pk / pk_nonlin_reference, label=r"$h = {}$".format(h))
plt.legend()
plt.xscale("log")
plt.xlabel(r"$k ~ [h / \mathrm{Mpc}]$")
plt.ylabel(r"$P(k, h) / P(k, h=0.705)$")
plt.tight_layout()
plt.savefig("../plots/pk_h0_dependence.png", dpi=450)
plt.show()
In [ ]: