mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 00:58:03 +00:00
Add density field plot and start preparing CSiBORG2 (#94)
* Add RAMSES2HDF5 conversion * Upload changes * Clean up * More clean up * updates * Little change * pep9 * Add basic SPH calculation for a snapshot * Add submit script * Remove echo * Little changes * Send off changes * Little formatting * Little updates * Add nthreads argument * Upload chagnes * Add nthreads arguemnts * Some local changes.. * Update scripts * Add submission script * Update script * Update params * Rename CSiBORGBox to CSiBORG1box * Rename CSiBORG1 reader * Move files * Rename folder again * Add basic plotting here * Add new skeletons * Move def * Update nbs * Edit directories * Rename files * Add units to converted snapshots * Fix empty dataset bug * Delete file * Edits to submission scripts * Edit paths * Update .gitignore * Fix attrs * Update weighting * Fix RA/dec bug * Add FORNAX cluster * Little edit * Remove boxes since will no longer need * Move func back * Edit to include sort by membership * Edit paths * Purge basic things * Start removing * Bring file back * Scratch * Update the rest * Improve the entire file * Remove old things * Remove old * Delete old things * Fully updates * Rename file * Edit submit script * Little things * Add print statement * Add here cols_to_structured * Edit halo cat * Remove old import * Add comment * Update paths manager * Move file * Remove file * Add chains
This commit is contained in:
parent
6042a87111
commit
aaa14fc880
30 changed files with 1682 additions and 1728 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -26,3 +26,6 @@ scripts_plots/*.sh
|
|||
notebooks/test.ipynb
|
||||
scripts/mgtree.py
|
||||
scripts/makemerger.py
|
||||
|
||||
*.out
|
||||
*/python.sh
|
||||
|
|
|
@ -20,11 +20,14 @@ from .utils import (center_of_mass, delta2ncells, number_counts,
|
|||
hms_to_degrees, dms_to_degrees, great_circle_distance) # noqa
|
||||
|
||||
# Arguments to csiborgtools.read.Paths.
|
||||
paths_glamdring = {"srcdir": "/mnt/extraspace/hdesmond/",
|
||||
"postdir": "/mnt/extraspace/rstiskalek/CSiBORG/",
|
||||
"borg_dir": "/users/hdesmond/BORG_final/",
|
||||
"quijote_dir": "/mnt/extraspace/rstiskalek/Quijote",
|
||||
}
|
||||
paths_glamdring = {
|
||||
"csiborg1_srcdir": "/mnt/extraspace/rstiskalek/csiborg1",
|
||||
"csiborg2_main_srcdir": "/mnt/extraspace/rstiskalek/csiborg2_main",
|
||||
"csiborg2_varysmall_srcdir": "/mnt/extraspace/rstiskalek/csiborg2_varysmall", # noqa
|
||||
"csiborg2_random_srcdir": "/mnt/extraspace/rstiskalek/csiborg2_random", # noqa
|
||||
"postdir": "/mnt/extraspace/rstiskalek/csiborg_postprocessing/",
|
||||
"quijote_dir": "/mnt/extraspace/rstiskalek/quijote",
|
||||
}
|
||||
|
||||
|
||||
neighbour_kwargs = {"rmax_radial": 155 / 0.705,
|
||||
|
@ -76,4 +79,8 @@ clusters = {"Virgo": read.ObservedCluster(RA=hms_to_degrees(12, 27),
|
|||
dec=dms_to_degrees(12, 43),
|
||||
dist=16.5 * 0.7,
|
||||
name="Virgo"),
|
||||
"Fornax": read.ObservedCluster(RA=hms_to_degrees(3, 38),
|
||||
dec=dms_to_degrees(-35, 27),
|
||||
dist=19 * 0.7,
|
||||
name="Fornax"),
|
||||
}
|
||||
|
|
|
@ -69,7 +69,7 @@ class DensityField(BaseField):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
The simulation box information and transformations.
|
||||
MAS : str
|
||||
Mass assignment scheme. Options are Options are: 'NGP' (nearest grid
|
||||
|
@ -167,7 +167,7 @@ class DensityField(BaseField):
|
|||
#
|
||||
# Parameters
|
||||
# ----------
|
||||
# box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
# box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
# The simulation box information and transformations.
|
||||
# MAS : str
|
||||
# Mass assignment scheme. Options are Options are: 'NGP' (nearest grid
|
||||
|
@ -269,7 +269,7 @@ class VelocityField(BaseField):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
The simulation box information and transformations.
|
||||
MAS : str
|
||||
Mass assignment scheme. Options are Options are: 'NGP' (nearest grid
|
||||
|
@ -405,7 +405,7 @@ class PotentialField(BaseField):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
The simulation box information and transformations.
|
||||
MAS : str
|
||||
Mass assignment scheme. Options are Options are: 'NGP' (nearest grid
|
||||
|
@ -444,7 +444,7 @@ class TidalTensorField(BaseField):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
The simulation box information and transformations.
|
||||
MAS : str
|
||||
Mass assignment scheme used to calculate the density field. Options
|
||||
|
|
|
@ -139,7 +139,7 @@ def observer_vobs(velocity_field):
|
|||
return vobs
|
||||
|
||||
|
||||
def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
||||
def make_sky(field, angpos, dist, boxsize, volume_weight=True, verbose=True):
|
||||
r"""
|
||||
Make a sky map of a scalar field. The observer is in the centre of the
|
||||
box the field is evaluated along directions `angpos` (RA [0, 360) deg,
|
||||
|
@ -153,9 +153,9 @@ def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
|||
angpos : 2-dimensional arrays of shape `(ndir, 2)`
|
||||
Directions to evaluate the field.
|
||||
dist : 1-dimensional array
|
||||
Uniformly spaced radial distances to evaluate the field.
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
The simulation box information and transformations.
|
||||
Uniformly spaced radial distances to evaluate the field in `Mpc / h`.
|
||||
boxsize : float
|
||||
Box size in `Mpc / h`.
|
||||
volume_weight : bool, optional
|
||||
Whether to weight the field by the volume of the pixel.
|
||||
verbose : bool, optional
|
||||
|
@ -168,11 +168,11 @@ def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
|||
dx = dist[1] - dist[0]
|
||||
assert numpy.allclose(dist[1:] - dist[:-1], dx)
|
||||
assert angpos.ndim == 2 and dist.ndim == 1
|
||||
|
||||
# We loop over the angular directions, at each step evaluating a vector
|
||||
# of distances. We pre-allocate arrays for speed.
|
||||
dir_loop = numpy.full((dist.size, 3), numpy.nan, dtype=numpy.float32)
|
||||
boxdist = box.mpc2box(dist)
|
||||
boxsize = box.box2mpc(1.)
|
||||
|
||||
ndir = angpos.shape[0]
|
||||
out = numpy.full(ndir, numpy.nan, dtype=numpy.float32)
|
||||
for i in trange(ndir) if verbose else range(ndir):
|
||||
|
@ -181,7 +181,7 @@ def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
|||
dir_loop[:, 2] = angpos[i, 1]
|
||||
if volume_weight:
|
||||
out[i] = numpy.sum(
|
||||
boxdist**2
|
||||
dist**2
|
||||
* evaluate_sky(field, pos=dir_loop, mpc2box=1 / boxsize))
|
||||
else:
|
||||
out[i] = numpy.sum(
|
||||
|
@ -244,7 +244,7 @@ def field2rsp(field, radvel_field, box, MAS, init_value=0.):
|
|||
radvel_field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Radial velocity field in `km / s`. Expected to account for the observer
|
||||
velocity.
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
||||
The simulation box information and transformations.
|
||||
MAS : str
|
||||
Mass assignment. Must be one of `NGP`, `CIC`, `TSC` or `PCS`.
|
||||
|
|
|
@ -49,5 +49,8 @@ def nside2radec(nside):
|
|||
"""
|
||||
pixs = numpy.arange(healpy.nside2npix(nside))
|
||||
theta, phi = healpy.pix2ang(nside, pixs)
|
||||
theta -= numpy.pi / 2
|
||||
return 180 / numpy.pi * numpy.vstack([phi, theta]).T
|
||||
|
||||
ra = 180 / numpy.pi * phi
|
||||
dec = 90 - 180 / numpy.pi * theta
|
||||
|
||||
return numpy.vstack([ra, dec]).T
|
||||
|
|
|
@ -12,12 +12,8 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from .box_units import CSiBORGBox, QuijoteBox # noqa
|
||||
from .halo_cat import (CSiBORGCatalogue, QuijoteCatalogue, # noqa
|
||||
CSiBORGPHEWCatalogue, fiducial_observers) # noqa
|
||||
fiducial_observers) # noqa
|
||||
from .obs import (SDSS, MCXCClusters, PlanckClusters, TwoMPPGalaxies, # noqa
|
||||
TwoMPPGroups, ObservedCluster, match_array_to_no_masking) # noqa
|
||||
from .paths import Paths # noqa
|
||||
from .readsim import (CSiBORGReader, QuijoteReader, load_halo_particles, # noqa
|
||||
make_halomap_dict) # noqa
|
||||
from .utils import cols_to_structured, read_h5 # noqa
|
||||
|
|
|
@ -1,276 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Deaglan Bartlett
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Simulation box unit transformations.
|
||||
"""
|
||||
from abc import ABC, abstractmethod, abstractproperty
|
||||
|
||||
import numpy
|
||||
from astropy import constants, units
|
||||
from astropy.cosmology import LambdaCDM
|
||||
|
||||
from .readsim import CSiBORGReader, QuijoteReader
|
||||
|
||||
###############################################################################
|
||||
# Base box #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class BaseBox(ABC):
|
||||
_name = "box_units"
|
||||
_cosmo = None
|
||||
|
||||
@property
|
||||
def cosmo(self):
|
||||
if self._cosmo is None:
|
||||
raise ValueError("Cosmology not set.")
|
||||
return self._cosmo
|
||||
|
||||
@property
|
||||
def H0(self):
|
||||
r"""Present Hubble parameter in :math:`\mathrm{km} \mathrm{s}^{-1}`"""
|
||||
return self.cosmo.H0.value
|
||||
|
||||
@property
|
||||
def rho_crit0(self):
|
||||
"""Present-day critical density in M_sun h^2 / cMpc^3."""
|
||||
rho_crit0 = self.cosmo.critical_density0
|
||||
return rho_crit0.to_value(units.solMass / units.Mpc**3)
|
||||
|
||||
@property
|
||||
def h(self):
|
||||
"""The little 'h' parameter at the time of the snapshot."""
|
||||
return self._h
|
||||
|
||||
@property
|
||||
def Om0(self):
|
||||
"""The present time matter density parameter."""
|
||||
return self.cosmo.Om0
|
||||
|
||||
@abstractproperty
|
||||
def boxsize(self):
|
||||
"""Box size in cMpc."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def mpc2box(self, length):
|
||||
r"""
|
||||
Convert length from :math:`\mathrm{cMpc} / h` to box units.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : float
|
||||
Length in :math:`\mathrm{cMpc}`
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def box2mpc(self, length):
|
||||
r"""
|
||||
Convert length from box units to :math:`\mathrm{cMpc} / h`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : float
|
||||
Length in box units.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def solarmass2box(self, mass):
|
||||
r"""
|
||||
Convert mass from :math:`M_\odot / h` to box units.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mass : float
|
||||
Mass in :math:`M_\odot / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def box2solarmass(self, mass):
|
||||
r"""
|
||||
Convert mass from box units to :math:`M_\odot / h`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mass : float
|
||||
Mass in box units.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def m200c_to_r200c(self, m200c):
|
||||
"""
|
||||
Convert M200c to R200c in units of cMpc / h.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
m200c : float
|
||||
M200c in units of M_sun / h.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG box #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORGBox(BaseBox):
|
||||
r"""
|
||||
CSiBORG box units class for converting between box and physical units.
|
||||
|
||||
Paramaters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
"""
|
||||
|
||||
def __init__(self, nsnap, nsim, paths):
|
||||
"""
|
||||
Read in the snapshot info file and set the units from it.
|
||||
"""
|
||||
partreader = CSiBORGReader(paths)
|
||||
info = partreader.read_info(nsnap, nsim)
|
||||
pars = ["boxlen", "time", "aexp", "H0", "omega_m", "omega_l",
|
||||
"omega_k", "omega_b", "unit_l", "unit_d", "unit_t"]
|
||||
for par in pars:
|
||||
setattr(self, "_" + par, info[par])
|
||||
self._h = self._H0 / 100
|
||||
self._cosmo = LambdaCDM(H0=100, Om0=self._omega_m,
|
||||
Ode0=self._omega_l, Tcmb0=2.725 * units.K,
|
||||
Ob0=self._omega_b)
|
||||
self._Msuncgs = constants.M_sun.cgs.value # Solar mass in grams
|
||||
|
||||
def mpc2box(self, length):
|
||||
conv = (self._unit_l / units.kpc.to(units.cm) / self._aexp) * 1e-3
|
||||
conv *= self._h
|
||||
return length / conv
|
||||
|
||||
def box2mpc(self, length):
|
||||
conv = (self._unit_l / units.kpc.to(units.cm) / self._aexp) * 1e-3
|
||||
conv *= self._h
|
||||
return length * conv
|
||||
|
||||
def solarmass2box(self, mass):
|
||||
conv = (self._unit_d * self._unit_l**3) / self._Msuncgs
|
||||
conv *= self.h
|
||||
return mass / conv
|
||||
|
||||
def box2solarmass(self, mass):
|
||||
conv = (self._unit_d * self._unit_l**3) / self._Msuncgs
|
||||
conv *= self.h
|
||||
return mass * conv
|
||||
|
||||
def box2vel(self, vel):
|
||||
r"""
|
||||
Convert velocity from box units to :math:`\mathrm{km} \mathrm{s}^{-1}`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vel : float
|
||||
Velocity in box units.
|
||||
|
||||
Returns
|
||||
-------
|
||||
vel : float
|
||||
Velocity in :math:`\mathrm{km} \mathrm{s}^{-1}`.
|
||||
"""
|
||||
return vel * (1e-2 * self._unit_l / self._unit_t / self._aexp) * 1e-3
|
||||
|
||||
@property
|
||||
def boxsize(self):
|
||||
return self.box2mpc(1.)
|
||||
|
||||
def m200c_to_r200c(self, m200c):
|
||||
rho_crit = self.cosmo.critical_density(1 / self._aexp - 1)
|
||||
rho_crit = rho_crit.to_value(units.solMass / units.Mpc**3)
|
||||
r200c = (3 * m200c / (4 * numpy.pi * 200 * rho_crit))**(1 / 3)
|
||||
return r200c / self._aexp
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Quijote fiducial cosmology box #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class QuijoteBox(BaseBox):
|
||||
"""
|
||||
Quijote cosmology box.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot number.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
Paths manager
|
||||
"""
|
||||
|
||||
def __init__(self, nsnap, nsim, paths):
|
||||
zdict = {4: 0.0, 3: 0.5, 2: 1.0, 1: 2.0, 0: 3.0}
|
||||
assert nsnap in zdict.keys(), f"`nsnap` must be in {zdict.keys()}."
|
||||
info = QuijoteReader(paths).read_info(nsnap, nsim)
|
||||
self._aexp = 1 / (1 + zdict[nsnap])
|
||||
self._h = info["h"]
|
||||
self._cosmo = LambdaCDM(H0=100, Om0=info["Omega_m"],
|
||||
Ode0=info["Omega_l"], Tcmb0=2.725 * units.K)
|
||||
self._info = info
|
||||
|
||||
@property
|
||||
def boxsize(self):
|
||||
return self._info["BoxSize"]
|
||||
|
||||
def box2mpc(self, length):
|
||||
return length * self.boxsize
|
||||
|
||||
def mpc2box(self, length):
|
||||
return length / self.boxsize
|
||||
|
||||
def solarmass2box(self, mass):
|
||||
return mass / self._info["TotMass"]
|
||||
|
||||
def box2solarmass(self, mass):
|
||||
return mass * self._info["TotMass"]
|
||||
|
||||
def m200c_to_r200c(self, m200c):
|
||||
raise ValueError("Not implemented for Quijote boxes.")
|
|
@ -28,9 +28,9 @@ from sklearn.neighbors import NearestNeighbors
|
|||
from ..utils import (cartesian_to_radec, fprint, great_circle_distance,
|
||||
number_counts, periodic_distance_two_points,
|
||||
real2redshift)
|
||||
from .box_units import CSiBORGBox, QuijoteBox
|
||||
# TODO: removing these
|
||||
from .box_units import CSiBORG1Box, QuijoteBox
|
||||
from .paths import Paths
|
||||
from .readsim import load_halo_particles, make_halomap_dict
|
||||
|
||||
###############################################################################
|
||||
# Base catalogue #
|
||||
|
@ -622,75 +622,7 @@ class CSiBORGCatalogue(BaseCatalogue):
|
|||
"csiborg", nsim, max(paths.get_snapshots(nsim, "csiborg")),
|
||||
halo_finder, catalogue_name, paths, mass_key, bounds,
|
||||
[338.85, 338.85, 338.85], observer_velocity, cache_maxsize)
|
||||
self.box = CSiBORGBox(self.nsnap, self.nsim, self.paths)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Quijote PHEW without snapshot catalogue #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORGPHEWCatalogue(BaseCatalogue):
|
||||
r"""
|
||||
CSiBORG PHEW halo catalogue without snapshot. Units typically used are:
|
||||
- Length: :math:`cMpc / h`
|
||||
- Mass: :math:`M_\odot / h`
|
||||
|
||||
Note that the PHEW catalogue is not very reliable.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
Paths object.
|
||||
mass_key : str, optional
|
||||
Mass key of the catalogue.
|
||||
bounds : dict, optional
|
||||
Parameter bounds; keys as parameter names, values as (min, max) or
|
||||
a boolean.
|
||||
cache_maxsize : int, optional
|
||||
Maximum number of cached arrays.
|
||||
"""
|
||||
def __init__(self, nsnap, nsim, paths, mass_key=None, bounds=None,
|
||||
cache_maxsize=64):
|
||||
super().__init__()
|
||||
self.simname = "csiborg"
|
||||
self.nsnap = nsnap
|
||||
self.nsim = nsim
|
||||
self.paths = paths
|
||||
self.mass_key = mass_key
|
||||
self.observer_location = [338.85, 338.85, 338.85]
|
||||
|
||||
fname = paths.processed_phew(nsim)
|
||||
self._data = File(fname, "r")
|
||||
if str(nsnap) not in self._data.keys():
|
||||
raise ValueError(f"Snapshot {nsnap} not in the catalogue. "
|
||||
f"Options are {self.get_snapshots(nsim, paths)}")
|
||||
self.catalogue_name = str(nsnap)
|
||||
self._is_closed = False
|
||||
|
||||
self.cache_maxsize = cache_maxsize
|
||||
|
||||
if bounds is not None:
|
||||
self._make_mask(bounds)
|
||||
|
||||
self._derived_properties = ["cartesian_pos", "spherical_pos", "dist"]
|
||||
self.box = CSiBORGBox(self.nsnap, self.nsim, self.paths)
|
||||
self.clear_cache()
|
||||
|
||||
@staticmethod
|
||||
def get_snapshots(nsim, paths):
|
||||
"""List of snapshots available for this simulation."""
|
||||
fname = paths.processed_phew(nsim)
|
||||
|
||||
with File(fname, "r") as f:
|
||||
snaps = [int(key) for key in f.keys() if key != "info"]
|
||||
f.close()
|
||||
|
||||
return numpy.sort(snaps)
|
||||
self.box = CSiBORG1Box(self.nsnap, self.nsim, self.paths)
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -850,3 +782,41 @@ def find_boxed(pos, center, subbox_size, boxsize):
|
|||
start_index = i + 1
|
||||
|
||||
return indxs
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Supplementary functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def make_halomap_dict(halomap):
|
||||
"""
|
||||
Make a dictionary mapping halo IDs to their start and end indices in the
|
||||
snapshot particle array.
|
||||
"""
|
||||
return {hid: (int(start), int(end)) for hid, start, end in halomap}
|
||||
|
||||
|
||||
def load_halo_particles(hid, particles, hid2map):
|
||||
"""
|
||||
Load a halo's particles from a particle array. If it is not there, i.e
|
||||
halo has no associated particles, return `None`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hid : int
|
||||
Halo ID.
|
||||
particles : 2-dimensional array
|
||||
Array of particles.
|
||||
hid2map : dict
|
||||
Dictionary mapping halo IDs to `halo_map` array positions.
|
||||
|
||||
Returns
|
||||
-------
|
||||
parts : 1- or 2-dimensional array
|
||||
"""
|
||||
try:
|
||||
k0, kf = hid2map[hid]
|
||||
return particles[k0:kf + 1]
|
||||
except KeyError:
|
||||
return None
|
|
@ -26,7 +26,6 @@ from astropy.io import fits
|
|||
from astropy.cosmology import FlatLambdaCDM
|
||||
from scipy import constants
|
||||
|
||||
from .utils import cols_to_structured
|
||||
|
||||
###############################################################################
|
||||
# Text survey base class #
|
||||
|
@ -830,3 +829,17 @@ def match_array_to_no_masking(arr, surv):
|
|||
out[indx] = arr[i]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def cols_to_structured(N, cols):
|
||||
"""
|
||||
Allocate a structured array from `cols`, a list of (name, dtype) tuples.
|
||||
"""
|
||||
if not (isinstance(cols, list)
|
||||
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
|
||||
raise TypeError("`cols` must be a list of (name, dtype) tuples.")
|
||||
|
||||
names, formats = zip(*cols)
|
||||
dtype = {"names": names, "formats": formats}
|
||||
|
||||
return numpy.full(N, numpy.nan, dtype=dtype)
|
||||
|
|
|
@ -15,9 +15,9 @@
|
|||
"""
|
||||
CSiBORG paths manager.
|
||||
"""
|
||||
from glob import glob, iglob
|
||||
from glob import glob
|
||||
from os import makedirs
|
||||
from os.path import isdir, join
|
||||
from os.path import basename, isdir, join
|
||||
from warnings import warn
|
||||
|
||||
import numpy
|
||||
|
@ -40,6 +40,7 @@ class Paths:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
# HERE EDIT EVERYTHING
|
||||
srcdir : str, optional
|
||||
Path to the folder where the RAMSES outputs are stored.
|
||||
postdir: str, optional
|
||||
|
@ -49,73 +50,158 @@ class Paths:
|
|||
quiote_dir : str, optional
|
||||
Path to the folder where Quijote simulations are stored.
|
||||
"""
|
||||
_srcdir = None
|
||||
_postdir = None
|
||||
_borg_dir = None
|
||||
_quijote_dir = None
|
||||
|
||||
def __init__(self, srcdir=None, postdir=None, borg_dir=None,
|
||||
quijote_dir=None):
|
||||
self.srcdir = srcdir
|
||||
self.postdir = postdir
|
||||
self.borg_dir = borg_dir
|
||||
def __init__(self,
|
||||
csiborg1_srcdir=None,
|
||||
csiborg2_main_srcdir=None,
|
||||
csiborg2_random_srcdir=None,
|
||||
csiborg2_varysmall_srcdir=None,
|
||||
postdir=None,
|
||||
quijote_dir=None
|
||||
):
|
||||
self.csiborg1_srcdir = csiborg1_srcdir
|
||||
self.csiborg2_main_srcdir = csiborg2_main_srcdir
|
||||
self.csiborg2_random_srcdir = csiborg2_random_srcdir
|
||||
self.csiborg2_varysmall_srcdir = csiborg2_varysmall_srcdir
|
||||
self.quijote_dir = quijote_dir
|
||||
|
||||
@property
|
||||
def srcdir(self):
|
||||
"""Path to the folder where CSiBORG simulations are stored."""
|
||||
if self._srcdir is None:
|
||||
raise ValueError("`srcdir` is not set!")
|
||||
return self._srcdir
|
||||
self.postdir = postdir
|
||||
|
||||
@srcdir.setter
|
||||
def srcdir(self, path):
|
||||
if path is None:
|
||||
return
|
||||
check_directory(path)
|
||||
self._srcdir = path
|
||||
def get_ics(self, simname, from_quijote_backup=False):
|
||||
"""
|
||||
Get available IC realisation IDs for a given simulation.
|
||||
|
||||
@property
|
||||
def borg_dir(self):
|
||||
"""Path to the folder where BORG MCMC chains are stored."""
|
||||
if self._borg_dir is None:
|
||||
raise ValueError("`borg_dir` is not set!")
|
||||
return self._borg_dir
|
||||
Parameters
|
||||
----------
|
||||
simname : str
|
||||
Simulation name.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the ICs from the Quijote backup.
|
||||
|
||||
@borg_dir.setter
|
||||
def borg_dir(self, path):
|
||||
if path is None:
|
||||
return
|
||||
check_directory(path)
|
||||
self._borg_dir = path
|
||||
Returns
|
||||
-------
|
||||
ids : 1-dimensional array
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
files = glob(join(self.csiborg1_srcdir, "chain_*"))
|
||||
files = [int(basename(f).replace("chain_", "") for f in files)]
|
||||
elif simname == "csiborg2_main":
|
||||
files = glob(join(self.csiborg2_main_srcdir, "chain_*"))
|
||||
files = [int(basename(f).replace("chain_", "") for f in files)]
|
||||
elif simname == "csiborg2_random":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "csiborg2_varysmall":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "quijote" or simname == "quijote_full":
|
||||
if from_quijote_backup:
|
||||
files = glob(join(self.quijote_dir, "halos_backup", "*"))
|
||||
else:
|
||||
warn(("Taking only the snapshots that also have "
|
||||
"a FoF catalogue!"))
|
||||
files = glob(join(self.quijote_dir, "Snapshots_fiducial", "*"))
|
||||
files = [int(f.split("/")[-1]) for f in files]
|
||||
files = [f for f in files if f < 100]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
@property
|
||||
def quijote_dir(self):
|
||||
"""Path to the folder where Quijote simulations are stored."""
|
||||
if self._quijote_dir is None:
|
||||
raise ValueError("`quijote_dir` is not set!")
|
||||
return self._quijote_dir
|
||||
return numpy.sort(files)
|
||||
|
||||
@quijote_dir.setter
|
||||
def quijote_dir(self, path):
|
||||
if path is None:
|
||||
return
|
||||
check_directory(path)
|
||||
self._quijote_dir = path
|
||||
def snapshots(self, nsim, simname):
|
||||
if simname == "csiborg":
|
||||
fname = "ramses_out_{}"
|
||||
if tonew:
|
||||
fname += "_new"
|
||||
return join(self.postdir, "output", fname.format(nsim))
|
||||
return join(self.csiborg1_srcdir, fname.format(nsim))
|
||||
elif simname == "csiborg2_main":
|
||||
return join(self.csiborg2_main_srcdir, f"chain_{nsim}", "output")
|
||||
elif simname == "csiborg2_random":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "csiborg2_varysmall":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "quijote":
|
||||
return join(self.quijote_dir, "Snapshots_fiducial", str(nsim))
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
@property
|
||||
def postdir(self):
|
||||
"""Path to the folder where post-processed files are stored."""
|
||||
if self._postdir is None:
|
||||
raise ValueError("`postdir` is not set!")
|
||||
return self._postdir
|
||||
def snapshot(self, nsnap, nsim, simname):
|
||||
"""
|
||||
Path to an IC realisation snapshot.
|
||||
|
||||
@postdir.setter
|
||||
def postdir(self, path):
|
||||
if path is None:
|
||||
return
|
||||
check_directory(path)
|
||||
self._postdir = path
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index. For Quijote, `-1` indicates the IC snapshot.
|
||||
nsim : inlot
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
return join(self.csiborg1_srcdir, f"chain_{nsim}",
|
||||
f"snapshot_{str(nsnap).zfill(5)}")
|
||||
elif simname == "csiborg2_main":
|
||||
return join(self.csiborg1_srcdir, f"chain_{nsim}",
|
||||
f"snapshot_{str(nsnap).zfill(5)}")
|
||||
elif simname == "csiborg2_random":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "csiborg2_varysmall":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "quijote":
|
||||
raise NotImplementedError("TODO")
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
|
||||
# simpath = self.snapshots(nsim, simname, tonew=nsnap == 1)
|
||||
# if simname == "csiborg":
|
||||
# return join(simpath, f"output_{str(nsnap).zfill(5)}")
|
||||
# else:
|
||||
# if nsnap == -1:
|
||||
# return join(simpath, "ICs", "ics")
|
||||
# nsnap = str(nsnap).zfill(3)
|
||||
# return join(simpath, f"snapdir_{nsnap}", f"snap_{nsnap}")
|
||||
|
||||
def get_snapshots(self, nsim, simname):
|
||||
"""
|
||||
List of available snapshots of simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
snapshots : 1-dimensional array
|
||||
"""
|
||||
simpath = self.snapshots(nsim, simname, tonew=False)
|
||||
|
||||
if simname == "csiborg":
|
||||
# Get all files in simpath that start with output_
|
||||
snaps = glob(join(simpath, "output_*"))
|
||||
# Take just the last _00XXXX from each file and strip zeros
|
||||
snaps = [int(snap.split("_")[-1].lstrip("0")) for snap in snaps]
|
||||
elif simname == "csiborg2_main":
|
||||
snaps = glob(join(simpath, "snapshot_*"))
|
||||
snaps = [basename(snap) for snap in snaps]
|
||||
snaps = [int(snap.split("_")[1]) for snap in snaps]
|
||||
elif simname == "csiborg2_random":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "csiborg2_varysmall":
|
||||
raise NotImplementedError("TODO")
|
||||
elif simname == "quijote":
|
||||
snaps = glob(join(simpath, "snapdir_*"))
|
||||
snaps = [int(snap.split("/")[-1].split("snapdir_")[-1])
|
||||
for snap in snaps]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
return numpy.sort(snaps)
|
||||
|
||||
@staticmethod
|
||||
def quijote_fiducial_nsim(nsim, nobs=None):
|
||||
|
@ -140,268 +226,6 @@ class Paths:
|
|||
return nsim
|
||||
return f"{str(nobs).zfill(2)}{str(nsim).zfill(3)}"
|
||||
|
||||
def borg_mcmc(self, nsim):
|
||||
"""
|
||||
Path to the BORG MCMC chain file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
return join(self.borg_dir, "mcmc", f"mcmc_{nsim}.h5")
|
||||
|
||||
def fof_cat(self, nsnap, nsim, simname, from_quijote_backup=False):
|
||||
r"""
|
||||
Path to the :math:`z = 0` FoF halo catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the path to the Quijote FoF catalogue from the
|
||||
backup.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
fdir = join(self.postdir, "halo_maker", f"ramses_{nsim}",
|
||||
f"output_{str(nsnap).zfill(5)}", "FOF")
|
||||
try_create_directory(fdir)
|
||||
return join(fdir, "fort.132")
|
||||
elif simname == "quijote":
|
||||
if from_quijote_backup:
|
||||
return join(self.quijote_dir, "halos_backup", str(nsim))
|
||||
else:
|
||||
return join(self.quijote_dir, "Halos_fiducial", str(nsim))
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
def get_ics(self, simname, from_quijote_backup=False):
|
||||
"""
|
||||
Get available IC realisation IDs for either the CSiBORG or Quijote
|
||||
simulation suite.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
simname : str
|
||||
Simulation name. Must be `csiborg` or `quijote`.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the ICs from the Quijote backup.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ids : 1-dimensional array
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
files = glob(join(self.srcdir, "ramses_out*"))
|
||||
files = [f.split("/")[-1] for f in files] # Only file names
|
||||
files = [f for f in files if "_inv" not in f] # Remove inv. ICs
|
||||
files = [f for f in files if "_new" not in f] # Remove _new
|
||||
files = [f for f in files if "OLD" not in f] # Remove _old
|
||||
files = [int(f.split("_")[-1]) for f in files]
|
||||
try:
|
||||
files.remove(5511)
|
||||
except ValueError:
|
||||
pass
|
||||
elif simname == "quijote" or simname == "quijote_full":
|
||||
if from_quijote_backup:
|
||||
files = glob(join(self.quijote_dir, "halos_backup", "*"))
|
||||
else:
|
||||
warn(("Taking only the snapshots that also have "
|
||||
"a FoF catalogue!"))
|
||||
files = glob(join(self.quijote_dir, "Snapshots_fiducial", "*"))
|
||||
files = [int(f.split("/")[-1]) for f in files]
|
||||
files = [f for f in files if f < 100]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
return numpy.sort(files)
|
||||
|
||||
def snapshots(self, nsim, simname, tonew=False):
|
||||
"""
|
||||
Path to an IC snapshots folder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
tonew : bool, optional
|
||||
Whether to return the path to the '_new' IC realisation of
|
||||
CSiBORG. Ignored for Quijote.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
fname = "ramses_out_{}"
|
||||
if tonew:
|
||||
fname += "_new"
|
||||
return join(self.postdir, "output", fname.format(nsim))
|
||||
return join(self.srcdir, fname.format(nsim))
|
||||
elif simname == "quijote":
|
||||
return join(self.quijote_dir, "Snapshots_fiducial", str(nsim))
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
def get_snapshots(self, nsim, simname):
|
||||
"""
|
||||
List of available snapshots of simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
snapshots : 1-dimensional array
|
||||
"""
|
||||
simpath = self.snapshots(nsim, simname, tonew=False)
|
||||
|
||||
if simname == "csiborg":
|
||||
# Get all files in simpath that start with output_
|
||||
snaps = glob(join(simpath, "output_*"))
|
||||
# Take just the last _00XXXX from each file and strip zeros
|
||||
snaps = [int(snap.split("_")[-1].lstrip("0")) for snap in snaps]
|
||||
elif simname == "quijote":
|
||||
snaps = glob(join(simpath, "snapdir_*"))
|
||||
snaps = [int(snap.split("/")[-1].split("snapdir_")[-1])
|
||||
for snap in snaps]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
return numpy.sort(snaps)
|
||||
|
||||
def snapshot(self, nsnap, nsim, simname):
|
||||
"""
|
||||
Path to an IC realisation snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index. For Quijote, `-1` indicates the IC snapshot.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
simpath = self.snapshots(nsim, simname, tonew=nsnap == 1)
|
||||
if simname == "csiborg":
|
||||
return join(simpath, f"output_{str(nsnap).zfill(5)}")
|
||||
else:
|
||||
if nsnap == -1:
|
||||
return join(simpath, "ICs", "ics")
|
||||
nsnap = str(nsnap).zfill(3)
|
||||
return join(simpath, f"snapdir_{nsnap}", f"snap_{nsnap}")
|
||||
|
||||
def processed_output(self, nsim, simname, halo_finder):
|
||||
"""
|
||||
Path to the files containing all particles of a CSiBORG realisation at
|
||||
:math:`z = 0`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
halo_finder : str
|
||||
Halo finder name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
fdir = join(self.postdir, "processed_output")
|
||||
elif simname == "quijote":
|
||||
fdir = join(self.quijote_dir, "Particles_fiducial")
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
try_create_directory(fdir)
|
||||
fname = f"parts_{halo_finder}_{str(nsim).zfill(5)}.hdf5"
|
||||
return join(fdir, fname)
|
||||
|
||||
def processed_phew(self, nsim):
|
||||
"""
|
||||
Path to the files containing PHEW CSiBORG catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
fdir = join(self.postdir, "processed_output")
|
||||
try_create_directory(fdir)
|
||||
return join(fdir, f"phew_{str(nsim).zfill(5)}.hdf5")
|
||||
|
||||
def halomaker_particle_membership(self, nsnap, nsim, halo_finder):
|
||||
"""
|
||||
Path to the HaloMaker particle membership file (CSiBORG only).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
halo_finder : str
|
||||
Halo finder name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
fdir = join(self.postdir, "halo_maker", f"ramses_{nsim}",
|
||||
f"output_{str(nsnap).zfill(5)}", halo_finder)
|
||||
fpath = join(fdir, "*particle_membership*")
|
||||
return next(iglob(fpath, recursive=True), None)
|
||||
|
||||
def ascii_positions(self, nsim, kind):
|
||||
"""
|
||||
Path to ASCII files containing the positions of particles or halos.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
kind : str
|
||||
Kind of data to extract. Must be one of `particles`,
|
||||
`particles_rsp`, `halos`, `halos_rsp`.
|
||||
"""
|
||||
assert kind in ["particles", "particles_rsp", "halos", "halos_rsp"]
|
||||
|
||||
fdir = join(self.postdir, "ascii_positions")
|
||||
try_create_directory(fdir)
|
||||
fname = f"pos_{kind}_{str(nsim).zfill(5)}.txt"
|
||||
|
||||
return join(fdir, fname)
|
||||
|
||||
def overlap(self, simname, nsim0, nsimx, min_logmass, smoothed):
|
||||
"""
|
||||
Path to the overlap files between two CSiBORG simulations.
|
||||
|
@ -569,29 +393,6 @@ class Paths:
|
|||
|
||||
return join(fdir, fname)
|
||||
|
||||
def observer_peculiar_velocity(self, MAS, grid, nsim):
|
||||
"""
|
||||
Path to the files containing the observer peculiar velocity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
MAS : str
|
||||
Mass-assignment scheme.
|
||||
grid : int
|
||||
Grid size.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
fdir = join(self.postdir, "environment")
|
||||
try_create_directory(fdir)
|
||||
|
||||
fname = f"obs_vp_{MAS}_{str(nsim).zfill(5)}_{grid}.npz"
|
||||
return join(fdir, fname)
|
||||
|
||||
def cross_nearest(self, simname, run, kind, nsim=None, nobs=None):
|
||||
"""
|
||||
Path to the files containing distance from a halo in a reference
|
||||
|
|
|
@ -1,631 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Functions to read in the particle and clump files.
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from gc import collect
|
||||
from os.path import getsize, isfile, join
|
||||
from warnings import warn
|
||||
|
||||
import numpy
|
||||
import pynbody
|
||||
from scipy.io import FortranFile
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import readgadget
|
||||
from readfof import FoF_catalog
|
||||
except ImportError:
|
||||
warn("Could not import `readgadget` and `readfof`. Related routines will not be available", ImportWarning) # noqa
|
||||
from tqdm import trange
|
||||
|
||||
from ..utils import fprint
|
||||
from .paths import Paths
|
||||
from .utils import add_columns, cols_to_structured, flip_cols
|
||||
|
||||
|
||||
class BaseReader(ABC):
|
||||
"""
|
||||
Base class for all readers.
|
||||
"""
|
||||
_paths = None
|
||||
|
||||
@property
|
||||
def paths(self):
|
||||
"""Paths manager."""
|
||||
return self._paths
|
||||
|
||||
@paths.setter
|
||||
def paths(self, paths):
|
||||
assert isinstance(paths, Paths)
|
||||
self._paths = paths
|
||||
|
||||
@abstractmethod
|
||||
def read_info(self, nsnap, nsim):
|
||||
"""
|
||||
Read simulation snapshot info.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
info : dict
|
||||
Dictionary of information paramaters.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_snapshot(self, nsnap, nsim, kind, sort_like_final=False):
|
||||
"""
|
||||
Read snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
kind : str
|
||||
Information to read. Can be `pid`, `pos`, `vel`, or `mass`.
|
||||
sort_like_final : bool, optional
|
||||
Whether to sort the particles like the final snapshot.
|
||||
|
||||
Returns
|
||||
-------
|
||||
n-dimensional array
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def read_halo_id(self, nsnap, nsim, halo_finder, verbose=True):
|
||||
"""
|
||||
Read the (sub) halo membership of particles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
halo_finder : str
|
||||
Halo finder used when running the catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array of shape `(nparticles, )`
|
||||
"""
|
||||
|
||||
def read_catalogue(self, nsnap, nsim, halo_finder):
|
||||
"""
|
||||
Read in the halo catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
halo_finder : str
|
||||
Halo finder used when running the catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
structured array
|
||||
"""
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORGReader(BaseReader):
|
||||
"""
|
||||
Object to read in CSiBORG snapshots from the binary files and halo
|
||||
catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
"""
|
||||
def __init__(self, paths):
|
||||
self.paths = paths
|
||||
|
||||
def read_info(self, nsnap, nsim):
|
||||
snappath = self.paths.snapshot(nsnap, nsim, "csiborg")
|
||||
filename = join(snappath, "info_{}.txt".format(str(nsnap).zfill(5)))
|
||||
with open(filename, "r") as f:
|
||||
info = f.read().split()
|
||||
# Throw anything below ordering line out
|
||||
info = numpy.asarray(info[:info.index("ordering")])
|
||||
# Get indexes of lines with `=`. Indxs before/after be keys/vals
|
||||
eqs = numpy.asarray([i for i in range(info.size) if info[i] == '='])
|
||||
|
||||
keys = info[eqs - 1]
|
||||
vals = info[eqs + 1]
|
||||
return {key: convert_str_to_num(val) for key, val in zip(keys, vals)}
|
||||
|
||||
def read_snapshot(self, nsnap, nsim, kind):
|
||||
sim = pynbody.load(self.paths.snapshot(nsnap, nsim, "csiborg"))
|
||||
|
||||
if kind == "pid":
|
||||
x = numpy.array(sim["iord"], dtype=numpy.uint64)
|
||||
elif kind in ["pos", "vel", "mass"]:
|
||||
x = numpy.array(sim[kind], dtype=numpy.float32)
|
||||
else:
|
||||
raise ValueError(f"Unknown kind `{kind}`.")
|
||||
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
if kind in ["pos", "vel"]:
|
||||
x[:, [0, 2]] = x[:, [2, 0]]
|
||||
|
||||
del sim
|
||||
collect()
|
||||
|
||||
return x
|
||||
|
||||
def read_halo_id(self, nsnap, nsim, halo_finder, verbose=True):
|
||||
if halo_finder == "PHEW":
|
||||
ids = self.read_phew_id(nsnap, nsim, verbose)
|
||||
elif halo_finder in ["FOF"]:
|
||||
ids = self.read_halomaker_id(nsnap, nsim, halo_finder, verbose)
|
||||
else:
|
||||
raise ValueError(f"Unknown halo finder `{halo_finder}`.")
|
||||
return ids
|
||||
|
||||
def open_particle(self, nsnap, nsim, verbose=True):
|
||||
"""Open particle files to a given CSiBORG simulation."""
|
||||
snappath = self.paths.snapshot(nsnap, nsim, "csiborg")
|
||||
ncpu = int(self.read_info(nsnap, nsim)["ncpu"])
|
||||
nsnap = str(nsnap).zfill(5)
|
||||
fprint(f"reading in output `{nsnap}` with ncpu = `{ncpu}`.", verbose)
|
||||
|
||||
# First read the headers. Reallocate arrays and fill them.
|
||||
nparts = numpy.zeros(ncpu, dtype=int)
|
||||
partfiles = [None] * ncpu
|
||||
for cpu in range(ncpu):
|
||||
cpu_str = str(cpu + 1).zfill(5)
|
||||
fpath = join(snappath, "part_{}.out{}".format(nsnap, cpu_str))
|
||||
|
||||
f = FortranFile(fpath)
|
||||
# Read in this order
|
||||
ncpuloc = f.read_ints()
|
||||
if ncpuloc != ncpu:
|
||||
infopath = join(snappath, f"info_{nsnap}.txt")
|
||||
raise ValueError(
|
||||
"`ncpu = {}` of `{}` disagrees with `ncpu = {}` "
|
||||
"of `{}`.".format(ncpu, infopath, ncpuloc, fpath))
|
||||
ndim = f.read_ints()
|
||||
nparts[cpu] = f.read_ints()
|
||||
localseed = f.read_ints()
|
||||
nstar_tot = f.read_ints()
|
||||
mstar_tot = f.read_reals('d')
|
||||
mstar_lost = f.read_reals('d')
|
||||
nsink = f.read_ints()
|
||||
|
||||
partfiles[cpu] = f
|
||||
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
|
||||
|
||||
return nparts, partfiles
|
||||
|
||||
def open_unbinding(self, nsnap, nsim, cpu):
|
||||
"""Open PHEW unbinding files."""
|
||||
nsnap = str(nsnap).zfill(5)
|
||||
cpu = str(cpu + 1).zfill(5)
|
||||
fpath = join(self.paths.snapshots(nsim, "csiborg", tonew=False),
|
||||
f"output_{nsnap}", f"unbinding_{nsnap}.out{cpu}")
|
||||
return FortranFile(fpath)
|
||||
|
||||
def read_phew_id(self, nsnap, nsim, verbose):
|
||||
nparts, __ = self.open_particle(nsnap, nsim)
|
||||
start_ind = numpy.hstack([[0], numpy.cumsum(nparts[:-1])])
|
||||
ncpu = nparts.size
|
||||
|
||||
clumpid = numpy.full(numpy.sum(nparts), numpy.nan, dtype=numpy.int32)
|
||||
for cpu in trange(ncpu, disable=not verbose, desc="CPU"):
|
||||
i = start_ind[cpu]
|
||||
j = nparts[cpu]
|
||||
ff = self.open_unbinding(nsnap, nsim, cpu)
|
||||
clumpid[i:i + j] = ff.read_ints()
|
||||
ff.close()
|
||||
|
||||
return clumpid
|
||||
|
||||
def read_halomaker_id(self, nsnap, nsim, halo_finder, verbose):
|
||||
fpath = self.paths.halomaker_particle_membership(
|
||||
nsnap, nsim, halo_finder)
|
||||
|
||||
fprint("loading particle IDs from the snapshot.", verbose)
|
||||
pids = self.read_snapshot(nsnap, nsim, "pid")
|
||||
|
||||
fprint("mapping particle IDs to their indices.", verbose)
|
||||
pids_idx = {pid: i for i, pid in enumerate(pids)}
|
||||
# Unassigned particle IDs are assigned a halo ID of 0.
|
||||
fprint("mapping HIDs to their array indices.", verbose)
|
||||
hids = numpy.zeros(pids.size, dtype=numpy.int32)
|
||||
|
||||
# Read lin-by-line to avoid loading the whole file into memory.
|
||||
with open(fpath, 'r') as file:
|
||||
for line in tqdm(file, disable=not verbose,
|
||||
desc="Processing membership"):
|
||||
hid, pid = map(int, line.split())
|
||||
hids[pids_idx[pid]] = hid
|
||||
|
||||
del pids_idx
|
||||
collect()
|
||||
|
||||
return hids
|
||||
|
||||
def read_catalogue(self, nsnap, nsim, halo_finder):
|
||||
if halo_finder == "PHEW":
|
||||
return self.read_phew_clumps(nsnap, nsim)
|
||||
elif halo_finder == "FOF":
|
||||
return self.read_fof_halos(nsnap, nsim)
|
||||
else:
|
||||
raise ValueError(f"Unknown halo finder `{halo_finder}`.")
|
||||
|
||||
def read_fof_halos(self, nsnap, nsim):
|
||||
"""
|
||||
Read in the FoF halo catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
structured array
|
||||
"""
|
||||
info = self.read_info(nsnap, nsim)
|
||||
h = info["H0"] / 100
|
||||
|
||||
fpath = self.paths.fof_cat(nsnap, nsim, "csiborg")
|
||||
hid = numpy.genfromtxt(fpath, usecols=0, dtype=numpy.int32)
|
||||
pos = numpy.genfromtxt(fpath, usecols=(1, 2, 3), dtype=numpy.float32)
|
||||
totmass = numpy.genfromtxt(fpath, usecols=4, dtype=numpy.float32)
|
||||
m200c = numpy.genfromtxt(fpath, usecols=5, dtype=numpy.float32)
|
||||
|
||||
dtype = {"names": ["index", "x", "y", "z", "totpartmass", "m200c"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 5}
|
||||
out = numpy.full(hid.size, numpy.nan, dtype=dtype)
|
||||
out["index"] = hid
|
||||
out["x"] = pos[:, 0] * h + 677.7 / 2
|
||||
out["y"] = pos[:, 1] * h + 677.7 / 2
|
||||
out["z"] = pos[:, 2] * h + 677.7 / 2
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
flip_cols(out, "x", "z")
|
||||
out["totpartmass"] = totmass * 1e11 * h
|
||||
out["m200c"] = m200c * 1e11 * h
|
||||
return out
|
||||
|
||||
def read_phew_clumps(self, nsnap, nsim, verbose=True):
|
||||
"""
|
||||
Read in a PHEW clump file `clump_XXXXX.dat`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
structured array
|
||||
"""
|
||||
nsnap = str(nsnap).zfill(5)
|
||||
fname = join(self.paths.snapshots(nsim, "csiborg", tonew=False),
|
||||
"output_{}".format(nsnap),
|
||||
"clump_{}.dat".format(nsnap))
|
||||
|
||||
if not isfile(fname) or getsize(fname) == 0:
|
||||
raise FileExistsError(f"Clump file `{fname}` does not exist.")
|
||||
|
||||
data = numpy.genfromtxt(fname)
|
||||
|
||||
if data.ndim == 1:
|
||||
raise FileExistsError(f"Invalid clump file `{fname}`.")
|
||||
|
||||
# How the data is stored in the clump file.
|
||||
clump_cols = {"index": (0, numpy.int32),
|
||||
"level": (1, numpy.int32),
|
||||
"parent": (2, numpy.int32),
|
||||
"ncell": (3, numpy.float32),
|
||||
"x": (4, numpy.float32),
|
||||
"y": (5, numpy.float32),
|
||||
"z": (6, numpy.float32),
|
||||
"rho-": (7, numpy.float32),
|
||||
"rho+": (8, numpy.float32),
|
||||
"rho_av": (9, numpy.float32),
|
||||
"mass_cl": (10, numpy.float32),
|
||||
"relevance": (11, numpy.float32),
|
||||
}
|
||||
|
||||
cols = list(clump_cols.keys())
|
||||
dtype = [(col, clump_cols[col][1]) for col in cols]
|
||||
out = cols_to_structured(data.shape[0], dtype)
|
||||
for col in cols:
|
||||
out[col] = data[:, clump_cols[col][0]]
|
||||
|
||||
# Convert to cMpc / h and Msun / h
|
||||
out['x'] *= 677.7
|
||||
out['y'] *= 677.7
|
||||
out['z'] *= 677.7
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
flip_cols(out, "x", "z")
|
||||
out["mass_cl"] *= 2.6543271649678946e+19
|
||||
|
||||
ultimate_parent, summed_mass = self.find_parents(out)
|
||||
|
||||
out = add_columns(out, [ultimate_parent, summed_mass],
|
||||
["ultimate_parent", "summed_mass"])
|
||||
return out
|
||||
|
||||
def find_parents(self, clumparr):
|
||||
"""
|
||||
Find ultimate parent haloes for every PHEW clump.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumparr : structured array
|
||||
Clump array. Must contain `index` and `parent` columns.
|
||||
|
||||
Returns
|
||||
-------
|
||||
parent_arr : 1-dimensional array of shape `(nclumps, )`
|
||||
The ultimate parent halo index of every clump.
|
||||
parent_mass : 1-dimensional array of shape `(nclumps, )`
|
||||
The summed substructure mass of ultimate parent clumps.
|
||||
"""
|
||||
clindex = clumparr["index"]
|
||||
parindex = clumparr["parent"]
|
||||
clmass = clumparr["mass_cl"]
|
||||
|
||||
clindex_to_array_index = {clindex[i]: i for i in range(clindex.size)}
|
||||
|
||||
parent_arr = numpy.copy(parindex)
|
||||
for i in range(clindex.size):
|
||||
cl = clindex[i]
|
||||
par = parindex[i]
|
||||
|
||||
while cl != par:
|
||||
|
||||
element = clindex_to_array_index[par]
|
||||
|
||||
cl = clindex[element]
|
||||
par = parindex[element]
|
||||
|
||||
parent_arr[i] = cl
|
||||
|
||||
parent_mass = numpy.full(clindex.size, 0, dtype=numpy.float32)
|
||||
# Assign the clump masses to the ultimate parent haloes. For each clump
|
||||
# find its ultimate parent and add its mass to the parent mass.
|
||||
for i in range(clindex.size):
|
||||
element = clindex_to_array_index[parent_arr[i]]
|
||||
parent_mass[element] += clmass[i]
|
||||
|
||||
# Set this to NaN for the clumps that are not ultimate parents.
|
||||
parent_mass[clindex != parindex] = numpy.nan
|
||||
|
||||
return parent_arr, parent_mass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Quijote particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class QuijoteReader(BaseReader):
|
||||
"""
|
||||
Object to read in Quijote snapshots from the binary files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
"""
|
||||
def __init__(self, paths):
|
||||
self.paths = paths
|
||||
|
||||
def read_info(self, nsnap, nsim):
|
||||
snapshot = self.paths.snapshot(nsnap, nsim, "quijote")
|
||||
header = readgadget.header(snapshot)
|
||||
out = {"BoxSize": header.boxsize / 1e3, # Mpc/h
|
||||
"Nall": header.nall[1], # Tot num of particles
|
||||
"PartMass": header.massarr[1] * 1e10, # Part mass in Msun/h
|
||||
"Omega_m": header.omega_m,
|
||||
"Omega_l": header.omega_l,
|
||||
"h": header.hubble,
|
||||
"redshift": header.redshift,
|
||||
}
|
||||
out["TotMass"] = out["Nall"] * out["PartMass"]
|
||||
out["Hubble"] = (100.0 * numpy.sqrt(
|
||||
header.omega_m * (1.0 + header.redshift)**3 + header.omega_l))
|
||||
return out
|
||||
|
||||
def read_snapshot(self, nsnap, nsim, kind):
|
||||
snapshot = self.paths.snapshot(nsnap, nsim, "quijote")
|
||||
info = self.read_info(nsnap, nsim)
|
||||
ptype = [1] # DM in Gadget speech
|
||||
|
||||
if kind == "pid":
|
||||
return readgadget.read_block(snapshot, "ID ", ptype)
|
||||
elif kind == "pos":
|
||||
pos = readgadget.read_block(snapshot, "POS ", ptype) / 1e3 # Mpc/h
|
||||
pos = pos.astype(numpy.float32)
|
||||
pos /= info["BoxSize"] # Box units
|
||||
return pos
|
||||
elif kind == "vel":
|
||||
vel = readgadget.read_block(snapshot, "VEL ", ptype)
|
||||
vel = vel.astype(numpy.float32)
|
||||
vel *= (1 + info["redshift"]) # km / s
|
||||
return vel
|
||||
elif kind == "mass":
|
||||
return numpy.full(info["Nall"], info["PartMass"],
|
||||
dtype=numpy.float32)
|
||||
else:
|
||||
raise ValueError(f"Unsupported kind `{kind}`.")
|
||||
|
||||
def read_halo_id(self, nsnap, nsim, halo_finder, verbose=True):
|
||||
if halo_finder == "FOF":
|
||||
path = self.paths.fof_cat(nsnap, nsim, "quijote")
|
||||
cat = FoF_catalog(path, nsnap)
|
||||
pids = self.read_snapshot(nsnap, nsim, kind="pid")
|
||||
|
||||
# Read the FoF particle membership.
|
||||
fprint("reading the FoF particle membership.")
|
||||
group_pids = cat.GroupIDs
|
||||
group_len = cat.GroupLen
|
||||
|
||||
# Create a mapping from particle ID to FoF group ID.
|
||||
fprint("creating the particle to FoF ID to map.")
|
||||
ks = numpy.insert(numpy.cumsum(group_len), 0, 0)
|
||||
pid2hid = numpy.full(
|
||||
(group_pids.size, 2), numpy.nan, dtype=numpy.uint64)
|
||||
for i, (k0, kf) in enumerate(zip(ks[:-1], ks[1:])):
|
||||
pid2hid[k0:kf, 0] = i + 1
|
||||
pid2hid[k0:kf, 1] = group_pids[k0:kf]
|
||||
pid2hid = {pid: hid for hid, pid in pid2hid}
|
||||
|
||||
# Create the final array of hids matchign the snapshot array.
|
||||
# Unassigned particles have hid 0.
|
||||
fprint("creating the final hid array.")
|
||||
hids = numpy.full(pids.size, 0, dtype=numpy.uint64)
|
||||
for i in trange(pids.size, disable=not verbose):
|
||||
hids[i] = pid2hid.get(pids[i], 0)
|
||||
|
||||
return hids
|
||||
else:
|
||||
raise ValueError(f"Unknown halo finder `{halo_finder}`.")
|
||||
|
||||
def read_catalogue(self, nsnap, nsim, halo_finder):
|
||||
if halo_finder == "FOF":
|
||||
return self.read_fof_halos(nsnap, nsim)
|
||||
else:
|
||||
raise ValueError(f"Unknown halo finder `{halo_finder}`.")
|
||||
|
||||
def read_fof_halos(self, nsnap, nsim):
|
||||
"""
|
||||
Read in the FoF halo catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
structured array
|
||||
"""
|
||||
fpath = self.paths.fof_cat(nsnap, nsim, "quijote", False)
|
||||
fof = FoF_catalog(fpath, nsnap, long_ids=False, swap=False,
|
||||
SFR=False, read_IDs=False)
|
||||
|
||||
cols = [("x", numpy.float32),
|
||||
("y", numpy.float32),
|
||||
("z", numpy.float32),
|
||||
("vx", numpy.float32),
|
||||
("vy", numpy.float32),
|
||||
("vz", numpy.float32),
|
||||
("group_mass", numpy.float32),
|
||||
("npart", numpy.int32),
|
||||
("index", numpy.int32)
|
||||
]
|
||||
data = cols_to_structured(fof.GroupLen.size, cols)
|
||||
|
||||
pos = fof.GroupPos / 1e3
|
||||
vel = fof.GroupVel * (1 + self.read_info(nsnap, nsim)["redshift"])
|
||||
for i, p in enumerate(["x", "y", "z"]):
|
||||
data[p] = pos[:, i]
|
||||
data[f"v{p}"] = vel[:, i]
|
||||
data["group_mass"] = fof.GroupMass * 1e10
|
||||
data["npart"] = fof.GroupLen
|
||||
# We want to start indexing from 1. Index 0 is reserved for
|
||||
# particles unassigned to any FoF group.
|
||||
data["index"] = 1 + numpy.arange(data.size, dtype=numpy.int32)
|
||||
return data
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Supplementary functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def make_halomap_dict(halomap):
|
||||
"""
|
||||
Make a dictionary mapping halo IDs to their start and end indices in the
|
||||
snapshot particle array.
|
||||
"""
|
||||
return {hid: (int(start), int(end)) for hid, start, end in halomap}
|
||||
|
||||
|
||||
def load_halo_particles(hid, particles, hid2map):
|
||||
"""
|
||||
Load a halo's particles from a particle array. If it is not there, i.e
|
||||
halo has no associated particles, return `None`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hid : int
|
||||
Halo ID.
|
||||
particles : 2-dimensional array
|
||||
Array of particles.
|
||||
hid2map : dict
|
||||
Dictionary mapping halo IDs to `halo_map` array positions.
|
||||
|
||||
Returns
|
||||
-------
|
||||
parts : 1- or 2-dimensional array
|
||||
"""
|
||||
try:
|
||||
k0, kf = hid2map[hid]
|
||||
return particles[k0:kf + 1]
|
||||
except KeyError:
|
||||
return None
|
||||
|
||||
|
||||
def convert_str_to_num(s):
|
||||
"""
|
||||
Convert a string representation of a number to its appropriate numeric type
|
||||
(int or float).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
The string representation of the number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num : int or float
|
||||
"""
|
||||
try:
|
||||
return int(s)
|
||||
except ValueError:
|
||||
try:
|
||||
return float(s)
|
||||
except ValueError:
|
||||
warn(f"Cannot convert string '{s}' to number", UserWarning)
|
||||
return s
|
|
@ -1,126 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from os.path import isfile
|
||||
|
||||
import numpy
|
||||
from h5py import File
|
||||
|
||||
###############################################################################
|
||||
# Array manipulation #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def cols_to_structured(N, cols):
|
||||
"""
|
||||
Allocate a structured array from `cols`, a list of (name, dtype) tuples.
|
||||
"""
|
||||
if not (isinstance(cols, list)
|
||||
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
|
||||
raise TypeError("`cols` must be a list of (name, dtype) tuples.")
|
||||
|
||||
names, formats = zip(*cols)
|
||||
dtype = {"names": names, "formats": formats}
|
||||
|
||||
return numpy.full(N, numpy.nan, dtype=dtype)
|
||||
|
||||
|
||||
def add_columns(arr, X, cols):
|
||||
"""
|
||||
Add new columns `X` to a record array `arr`. Creates a new array.
|
||||
"""
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
|
||||
# Convert X to a list of 1D arrays for consistency
|
||||
if isinstance(X, numpy.ndarray) and X.ndim == 1:
|
||||
X = [X]
|
||||
elif isinstance(X, numpy.ndarray):
|
||||
raise ValueError("`X` should be a 1D array or a list of 1D arrays.")
|
||||
|
||||
if len(X) != len(cols):
|
||||
raise ValueError("Mismatch between `X` and `cols` lengths.")
|
||||
|
||||
if not all(isinstance(x, numpy.ndarray) and x.ndim == 1 for x in X):
|
||||
raise ValueError("All elements of `X` should be 1D arrays.")
|
||||
|
||||
if not all(x.size == arr.size for x in X):
|
||||
raise ValueError("All arrays in `X` must have the same size as `arr`.")
|
||||
|
||||
# Define new dtype
|
||||
dtype = list(arr.dtype.descr) + [(col, x.dtype) for col, x in zip(cols, X)]
|
||||
|
||||
# Create a new array and fill in values
|
||||
out = numpy.empty(arr.size, dtype=dtype)
|
||||
for col in arr.dtype.names:
|
||||
out[col] = arr[col]
|
||||
for col, x in zip(cols, X):
|
||||
out[col] = x
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def rm_columns(arr, cols):
|
||||
"""
|
||||
Remove columns `cols` from a structured array `arr`. Allocates a new array.
|
||||
"""
|
||||
# Ensure cols is a list
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
|
||||
# Check columns we wish to delete are in the array
|
||||
missing_cols = [col for col in cols if col not in arr.dtype.names]
|
||||
if missing_cols:
|
||||
raise ValueError(f"Columns `{missing_cols}` not in `arr`.")
|
||||
|
||||
# Define new dtype without the cols to be deleted
|
||||
new_dtype = [(n, dt) for n, dt in arr.dtype.descr if n not in cols]
|
||||
|
||||
# Allocate a new array and fill in values
|
||||
out = numpy.empty(arr.size, dtype=new_dtype)
|
||||
for name in out.dtype.names:
|
||||
out[name] = arr[name]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def flip_cols(arr, col1, col2):
|
||||
"""
|
||||
Flip values in columns `col1` and `col2` of a structured array `arr`.
|
||||
"""
|
||||
if col1 not in arr.dtype.names or col2 not in arr.dtype.names:
|
||||
raise ValueError(f"Both `{col1}` and `{col2}` must exist in `arr`.")
|
||||
|
||||
arr[col1], arr[col2] = numpy.copy(arr[col2]), numpy.copy(arr[col1])
|
||||
|
||||
|
||||
###############################################################################
|
||||
# h5py functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def read_h5(path):
|
||||
"""
|
||||
Return and return and open `h5py.File` object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str
|
||||
Path to the file.
|
||||
|
||||
Returns
|
||||
-------
|
||||
file : `h5py.File`
|
||||
"""
|
||||
if not isfile(path):
|
||||
raise IOError(f"File `{path}` does not exist!")
|
||||
return File(path, "r")
|
|
@ -244,7 +244,7 @@ def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
|||
Observer location in `Mpc / h`.
|
||||
observer_velocity: 1-dimensional array `(3,)`
|
||||
Observer velocity in `km / s`.
|
||||
box : py:class:`csiborg.read.CSiBORGBox`
|
||||
box : py:class:`csiborg.read.CSiBORG1Box`
|
||||
Box units.
|
||||
periodic_wrap : bool, optional
|
||||
Whether to wrap around the box, particles may be outside the default
|
||||
|
|
|
@ -567,7 +567,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"box = csiborgtools.read.CSiBORGBox(951, 7444, paths)\n",
|
||||
"box = csiborgtools.read.CSiBORG1Box(951, 7444, paths)\n",
|
||||
"\n",
|
||||
"field_generator = csiborgtools.field.DensityField(box, \"PCS\")"
|
||||
]
|
||||
|
|
|
@ -50,8 +50,8 @@ nproc = comm.Get_size()
|
|||
MAS = "CIC" # mass asignment scheme
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
box = csiborgtools.read.CSiBORGBox(paths)
|
||||
reader = csiborgtools.read.CSiBORGReader(paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(paths)
|
||||
reader = csiborgtools.read.CSiBORG1Reader(paths)
|
||||
ics = paths.get_ics("csiborg")
|
||||
nsims = len(ics)
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ for i, nsim in enumerate(nsims):
|
|||
now = datetime.now()
|
||||
print(f"{now}: calculating {i}th simulation `{nsim}`.", flush=True)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
|
||||
f = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
particles = f["particles"]
|
||||
|
|
|
@ -96,7 +96,7 @@ def sort_fofid(nsim, verbose=True):
|
|||
# Columns are halo ID, particle ID.
|
||||
fof = numpy.load(fpath)
|
||||
|
||||
reader = csiborgtools.read.CSiBORGReader(paths)
|
||||
reader = csiborgtools.read.CSiBORG1Reader(paths)
|
||||
pars_extract = ["x"] # Dummy variable
|
||||
__, pids = reader.read_snapshot(nsnap, nsim, pars_extract,
|
||||
return_structured=False, verbose=verbose)
|
||||
|
|
|
@ -79,7 +79,7 @@ def main(nsim, simname, verbose):
|
|||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
if simname == "csiborg":
|
||||
partreader = csiborgtools.read.CSiBORGReader(paths)
|
||||
partreader = csiborgtools.read.CSiBORG1Reader(paths)
|
||||
else:
|
||||
partreader = csiborgtools.read.QuijoteReader(paths)
|
||||
|
||||
|
@ -114,7 +114,7 @@ def main(nsim, simname, verbose):
|
|||
# In case of CSiBORG, we need to convert the mass and velocities from
|
||||
# box units.
|
||||
if simname == "csiborg":
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
parts[:, [3, 4, 5]] = box.box2vel(parts[:, [3, 4, 5]])
|
||||
parts[:, 6] = box.box2solarmass(parts[:, 6])
|
||||
|
||||
|
|
|
@ -1,116 +0,0 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""Convert the HDF5 CSiBORG particle file to an ASCII file."""
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import h5py
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from taskmaster import work_delegation
|
||||
from tqdm import trange
|
||||
|
||||
import csiborgtools
|
||||
from utils import get_nsims
|
||||
|
||||
|
||||
def positions_to_ascii(positions, output_filename, boxsize=None,
|
||||
chunk_size=50_000, verbose=True):
|
||||
"""
|
||||
Convert array of positions to an ASCII file. If `boxsize` is given,
|
||||
multiples the positions by it.
|
||||
"""
|
||||
total_size = len(positions)
|
||||
|
||||
if verbose:
|
||||
print(f"Number of rows to write: {total_size}")
|
||||
|
||||
with open(output_filename, 'w') as out_file:
|
||||
# Write the header
|
||||
out_file.write("#px py pz\n")
|
||||
|
||||
# Loop through data in chunks
|
||||
for i in trange(0, total_size, chunk_size,
|
||||
desc=f"Writing to ... `{output_filename}`",
|
||||
disable=not verbose):
|
||||
|
||||
end = i + chunk_size
|
||||
if end > total_size:
|
||||
end = total_size
|
||||
|
||||
data_chunk = positions[i:end]
|
||||
# Convert to positions Mpc / h
|
||||
data_chunk = data_chunk[:, :3]
|
||||
|
||||
if boxsize is not None:
|
||||
data_chunk *= boxsize
|
||||
|
||||
chunk_str = "\n".join([f"{x:.4f} {y:.4f} {z:.4f}"
|
||||
for x, y, z in data_chunk])
|
||||
out_file.write(chunk_str + "\n")
|
||||
|
||||
|
||||
def extract_positions(nsim, simname, paths, kind):
|
||||
"""
|
||||
Extract either the particle or halo positions.
|
||||
"""
|
||||
if kind == "particles":
|
||||
fname = paths.processed_output(nsim, simname, "FOF")
|
||||
return h5py.File(fname, 'r')["snapshot_final/pos"][:]
|
||||
|
||||
if kind == "particles_rsp":
|
||||
raise NotImplementedError("RSP of particles is not implemented yet.")
|
||||
|
||||
fpath = paths.observer_peculiar_velocity("PCS", 512, nsim)
|
||||
vpec_observer = numpy.load(fpath)["observer_vp"][0, :]
|
||||
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||
nsim, paths, "halo_catalogue", "FOF", bounds={"dist": (0, 155.5)},
|
||||
observer_velocity=vpec_observer)
|
||||
|
||||
if kind == "halos":
|
||||
return cat["cartesian_pos"]
|
||||
|
||||
if kind == "halos_rsp":
|
||||
return cat["cartesian_redshift_pos"]
|
||||
|
||||
raise ValueError(f"Unknown kind `{kind}`. Allowed values are: "
|
||||
"`particles`, `particles_rsp`, `halos`, `halos_rsp`.")
|
||||
|
||||
|
||||
def main(args, paths):
|
||||
boxsize = 677.7 if "particles" in args.kind else None
|
||||
pos = extract_positions(args.nsim, args.simname, paths, args.kind)
|
||||
output_filename = paths.ascii_positions(args.nsim, args.kind)
|
||||
positions_to_ascii(pos, output_filename, boxsize=boxsize)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--kind", type=str, required=True,
|
||||
choices=["particles", "particles_rsp", "halos", "halos_rsp"], # noqa
|
||||
help="Kind of data to extract.")
|
||||
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all.")
|
||||
parser.add_argument("--simname", type=str, default="csiborg",
|
||||
choices=["csiborg"],
|
||||
help="Simulation name")
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = get_nsims(args, paths)
|
||||
|
||||
def _main(nsim):
|
||||
main(nsim, paths, args.kind)
|
||||
|
||||
work_delegation(_main, nsims, MPI.COMM_WORLD)
|
|
@ -49,10 +49,11 @@ def density_field(nsim, parser_args, to_save=True):
|
|||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
fname = paths.processed_output(nsim, "csiborg", "halo_catalogue")
|
||||
|
||||
if not parser_args.in_rsp:
|
||||
# TODO I removed this function
|
||||
snap = csiborgtools.read.read_h5(fname)["snapshot_final"]
|
||||
pos = snap["pos"]
|
||||
mass = snap["mass"]
|
||||
|
@ -94,7 +95,7 @@ def velocity_field(nsim, parser_args, to_save=True):
|
|||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
fname = paths.processed_output(nsim, "csiborg", "halo_catalogue")
|
||||
|
||||
snap = csiborgtools.read.read_h5(fname)["snapshot_final"]
|
||||
|
@ -127,7 +128,7 @@ def radvel_field(nsim, parser_args, to_save=True):
|
|||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
|
||||
vel = numpy.load(paths.field("velocity", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp))
|
||||
|
@ -154,7 +155,7 @@ def potential_field(nsim, parser_args, to_save=True):
|
|||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
|
||||
if not parser_args.in_rsp:
|
||||
rho = numpy.load(paths.field(
|
||||
|
@ -192,7 +193,7 @@ def environment_field(nsim, parser_args, to_save=True):
|
|||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
|
||||
rho = numpy.load(paths.field(
|
||||
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
|
||||
|
|
|
@ -371,4 +371,4 @@ if __name__ == "__main__":
|
|||
def _main(nsim):
|
||||
main(nsim, args)
|
||||
|
||||
work_delegation(_main, nsims, MPI.COMM_WORLD)
|
||||
work_delegation(_main, nsims, MPI.COMM_WORLD)
|
201
scripts_independent/field_sph.py
Normal file
201
scripts_independent/field_sph.py
Normal file
|
@ -0,0 +1,201 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to construct the density and velocity fields for a simulation snapshot.
|
||||
The SPH filter is implemented in the cosmotool package.
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
from os import environ, remove
|
||||
from os.path import join, exists
|
||||
import subprocess
|
||||
from datetime import datetime
|
||||
|
||||
import hdf5plugin # noqa
|
||||
import numpy as np
|
||||
from h5py import File
|
||||
|
||||
|
||||
def now():
|
||||
return datetime.now()
|
||||
|
||||
|
||||
def generate_unique_id(file_path):
|
||||
"""
|
||||
Generate a unique ID for a file path.
|
||||
"""
|
||||
return file_path.replace('/', '_').replace(':', '_')
|
||||
|
||||
|
||||
def prepare_random(temporary_output_path, npart=100, dtype=np.float32):
|
||||
"""
|
||||
Prepare a random dataset for the SPH filter.
|
||||
"""
|
||||
print("Preparing random dataset.", flush=True)
|
||||
arr = np.full((npart, 7), np.nan, dtype=dtype)
|
||||
|
||||
arr[:, :3] = np.random.uniform(0, 1, (npart, 3))
|
||||
arr[:, 3:6] = np.random.normal(0, 1, (npart, 3))
|
||||
arr[:, 6] = np.ones(npart, dtype=dtype)
|
||||
|
||||
dset = np.random.random((npart, 7)).astype(dtype)
|
||||
dset[:, 6] = np.ones(npart, dtype=dtype)
|
||||
|
||||
with File(temporary_output_path, 'w') as target:
|
||||
target.create_dataset("particles", data=dset, dtype=dtype)
|
||||
|
||||
return 1.
|
||||
|
||||
|
||||
def prepare_gadget(snapshot_path, temporary_output_path):
|
||||
"""
|
||||
Prepare a GADGET snapshot for the SPH filter. Assumes there is only a
|
||||
single file per snapshot.
|
||||
"""
|
||||
with File(snapshot_path, 'r') as source, File(temporary_output_path, 'w') as target: # noqa
|
||||
boxsize = source["Header"].attrs["BoxSize"]
|
||||
|
||||
npart = sum(source["Header"].attrs["NumPart_Total"])
|
||||
nhighres = source["Header"].attrs["NumPart_Total"][1]
|
||||
|
||||
dset = target.create_dataset("particles", (npart, 7), dtype=np.float32)
|
||||
|
||||
# Copy to this dataset the high-resolution particles.
|
||||
dset[:nhighres, :3] = source["PartType1/Coordinates"][:]
|
||||
dset[:nhighres, 3:6] = source["PartType1/Velocities"][:]
|
||||
dset[:nhighres, 6] = np.ones(nhighres, dtype=np.float32) * source["Header"].attrs["MassTable"][1] # noqa
|
||||
|
||||
# Now copy the low-resolution particles.
|
||||
dset[nhighres:, :3] = source["PartType5/Coordinates"][:]
|
||||
dset[nhighres:, 3:6] = source["PartType5/Velocities"][:]
|
||||
dset[nhighres:, 6] = source["PartType5/Masses"][:]
|
||||
|
||||
return boxsize
|
||||
|
||||
|
||||
def run_sph_filter(particles_path, output_path, boxsize, resolution,
|
||||
SPH_executable):
|
||||
"""
|
||||
Run the SPH filter on a snapshot.
|
||||
"""
|
||||
if not exists(particles_path):
|
||||
raise RuntimeError(f"Particles file `{particles_path}` does not exist.") # noqa
|
||||
if not isinstance(boxsize, (int, float)):
|
||||
raise TypeError("`boxsize` must be a number.")
|
||||
if not isinstance(resolution, int):
|
||||
raise TypeError("`resolution` must be an integer.")
|
||||
if not exists(SPH_executable):
|
||||
raise RuntimeError(f"SPH executable `{SPH_executable}` does not exist.") # noqa
|
||||
|
||||
command = [SPH_executable, particles_path, str(1e14), str(boxsize),
|
||||
str(resolution), str(0), str(0), str(0), output_path, "1"]
|
||||
print(f"{now()}: executing `simple3DFilter`.", flush=True)
|
||||
start_time = now()
|
||||
process = subprocess.Popen(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
||||
universal_newlines=True)
|
||||
|
||||
for line in iter(process.stdout.readline, ""):
|
||||
print(line, end="", flush=True)
|
||||
process.wait()
|
||||
|
||||
if process.returncode != 0:
|
||||
raise RuntimeError("`simple3DFilter`failed.")
|
||||
else:
|
||||
dt = now() - start_time
|
||||
print(f"{now()}: `simple3DFilter`completed successfully in {dt}.",
|
||||
flush=True)
|
||||
|
||||
|
||||
def main(snapshot_path, output_path, resolution, scratch_space, SPH_executable,
|
||||
snapshot_kind):
|
||||
"""
|
||||
Construct the density and velocity fields for a simulation snapshot using
|
||||
`cosmotool` [1].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
snapshot_path : str
|
||||
Path to the simulation snapshot.
|
||||
output_path : str
|
||||
Path to the output HDF5 file.
|
||||
resolution : int
|
||||
Resolution of the density field.
|
||||
scratch_space : str
|
||||
Path to a folder where temporary files can be stored.
|
||||
SPH_executable : str
|
||||
Path to the `simple3DFilter` executable [1].
|
||||
snapshot_kind : str
|
||||
Kind of the simulation snapshot. Currently only `gadget4` is supported.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://bitbucket.org/glavaux/cosmotool/src/master/sample/simple3DFilter.cpp # noqa
|
||||
"""
|
||||
if snapshot_kind != "gadget4":
|
||||
raise NotImplementedError("Only GADGET HDF5 snapshots are supported.")
|
||||
|
||||
print("---------- SPH Density & Velocity Field Job Information ----------")
|
||||
print(f"Snapshot path: {snapshot_path}")
|
||||
print(f"Output path: {output_path}")
|
||||
print(f"Resolution: {resolution}")
|
||||
print(f"Scratch space: {scratch_space}")
|
||||
print(f"SPH executable: {SPH_executable}")
|
||||
print(f"Snapshot kind: {snapshot_kind}")
|
||||
print("------------------------------------------------------------------")
|
||||
print(flush=True)
|
||||
|
||||
temporary_output_path = join(
|
||||
scratch_space, generate_unique_id(snapshot_path))
|
||||
|
||||
if not temporary_output_path.endswith(".hdf5"):
|
||||
raise RuntimeError("Temporary output path must end with `.hdf5`.")
|
||||
|
||||
print(f"{now()}: preparing snapshot...", flush=True)
|
||||
boxsize = prepare_gadget(snapshot_path, temporary_output_path)
|
||||
print(f"{now()}: wrote temporary data to {temporary_output_path}.",
|
||||
flush=True)
|
||||
|
||||
run_sph_filter(temporary_output_path, output_path, boxsize, resolution,
|
||||
SPH_executable)
|
||||
print(f"{now()}: removing the temporary snapshot file.", flush=True)
|
||||
try:
|
||||
remove(temporary_output_path)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser(description="Generate SPH density and velocity field.") # noqa
|
||||
parser.add_argument("--snapshot_path", type=str, required=True,
|
||||
help="Path to the simulation snapshot.")
|
||||
parser.add_argument("--output_path", type=str, required=True,
|
||||
help="Path to the output HDF5 file.")
|
||||
parser.add_argument("--resolution", type=int, required=True,
|
||||
help="Resolution of the density and velocity field.")
|
||||
parser.add_argument("--scratch_space", type=str, required=True,
|
||||
help="Path to a folder where temporary files can be stored.") # noqa
|
||||
parser.add_argument("--SPH_executable", type=str, required=True,
|
||||
help="Path to the `simple3DFilter` executable.")
|
||||
parser.add_argument("--snapshot_kind", type=str, required=True,
|
||||
choices=["gadget4"],
|
||||
help="Kind of the simulation snapshot.")
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args.snapshot_path, args.output_path, args.resolution,
|
||||
args.scratch_space, args.SPH_executable, args.snapshot_kind)
|
40
scripts_independent/field_sph.sh
Executable file
40
scripts_independent/field_sph.sh
Executable file
|
@ -0,0 +1,40 @@
|
|||
#!/bin/sh
|
||||
|
||||
#SBATCH --ntasks-per-node=1
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --cpus-per-task=16
|
||||
#SBATCH --mem-per-cpu=7000
|
||||
#SBATCH -J SPH
|
||||
#SBATCH -o output_%J.out
|
||||
#SBATCH -e error_%J.err
|
||||
#SBATCH -p cosma8-serial
|
||||
#SBATCH -A dp016
|
||||
#SBATCH -t 04:00:00
|
||||
#SBATCH --mail-type=BEGIN,END,FAIL
|
||||
#SBATCH --mail-user=richard.stiskalek@physics.ox.ac.uk
|
||||
|
||||
|
||||
module purge
|
||||
module load intel_comp/2019
|
||||
module load intel_mpi/2019
|
||||
module load hdf5
|
||||
module load fftw
|
||||
module load gsl
|
||||
module load cmake
|
||||
module load python/3.10.12
|
||||
module list
|
||||
|
||||
source /cosma/home/dp016/dc-stis1/csiborgtools/venv_csiborgtools/bin/activate
|
||||
export OMP_NUM_THREADS=16
|
||||
export OMP_NESTED=true
|
||||
|
||||
# ADD CHAINS HERE
|
||||
snapshot_path="/cosma8/data/dp016/dc-stis1/csiborg2_main/chain_15517/output/snapshot_099_full.hdf5"
|
||||
output_path="/cosma8/data/dp016/dc-stis1/csiborg2_main/field/chain_15517.hdf5"
|
||||
resolution=256
|
||||
scratch_space="/cosma8/data/dp016/dc-stis1/csiborg2_main/field"
|
||||
SPH_executable="/cosma8/data/dp016/dc-stis1/cosmotool/bld2/sample/simple3DFilter"
|
||||
snapshot_kind="gadget4"
|
||||
|
||||
|
||||
python3 field_sph.py --snapshot_path $snapshot_path --output_path $output_path --resolution $resolution --scratch_space $scratch_space --SPH_executable $SPH_executable --snapshot_kind $snapshot_kind
|
737
scripts_independent/process_snapshot.py
Normal file
737
scripts_independent/process_snapshot.py
Normal file
|
@ -0,0 +1,737 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to process simulation snapshots to sorted HDF5 files. Be careful
|
||||
because reading the HDF5 file may require `hdf5plugin` package to be installed.
|
||||
The snapshot particles are sorted by their halo ID, so that particles of a halo
|
||||
can be accessed by slicing the array.
|
||||
|
||||
CSiBORG1 reader will complain unless it can find the halomaker FOF files
|
||||
where it expects them:
|
||||
fdir = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{self.nsim}/FOF"
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
from glob import glob, iglob
|
||||
from os import makedirs
|
||||
from os.path import basename, dirname, exists, join
|
||||
from warnings import catch_warnings, filterwarnings, warn
|
||||
|
||||
import hdf5plugin
|
||||
import numpy
|
||||
import pynbody
|
||||
import readgadget
|
||||
from astropy import constants, units
|
||||
from h5py import File
|
||||
from numba import jit
|
||||
from readfof import FoF_catalog
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
MSUNCGS = constants.M_sun.cgs.value
|
||||
BLOSC_KWARGS = {"cname": "blosclz",
|
||||
"clevel": 9,
|
||||
"shuffle": hdf5plugin.Blosc.SHUFFLE,
|
||||
}
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Utility functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def now():
|
||||
"""
|
||||
Return current time.
|
||||
"""
|
||||
return datetime.now()
|
||||
|
||||
|
||||
def flip_cols(arr, col1, col2):
|
||||
"""
|
||||
Flip values in columns `col1` and `col2` of a structured array `arr`.
|
||||
"""
|
||||
if col1 not in arr.dtype.names or col2 not in arr.dtype.names:
|
||||
raise ValueError(f"Both `{col1}` and `{col2}` must exist in `arr`.")
|
||||
|
||||
arr[col1], arr[col2] = numpy.copy(arr[col2]), numpy.copy(arr[col1])
|
||||
|
||||
|
||||
def convert_str_to_num(s):
|
||||
"""
|
||||
Convert a string representation of a number to its appropriate numeric type
|
||||
(int or float).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
The string representation of the number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num : int or float
|
||||
"""
|
||||
try:
|
||||
return int(s)
|
||||
except ValueError:
|
||||
try:
|
||||
return float(s)
|
||||
except ValueError:
|
||||
warn(f"Cannot convert string '{s}' to number", UserWarning)
|
||||
return s
|
||||
|
||||
|
||||
def cols_to_structured(N, cols):
|
||||
"""
|
||||
Allocate a structured array from `cols`, a list of (name, dtype) tuples.
|
||||
"""
|
||||
if not (isinstance(cols, list)
|
||||
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
|
||||
raise TypeError("`cols` must be a list of (name, dtype) tuples.")
|
||||
|
||||
names, formats = zip(*cols)
|
||||
dtype = {"names": names, "formats": formats}
|
||||
|
||||
return numpy.full(N, numpy.nan, dtype=dtype)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Base reader of snapshots #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class BaseReader(ABC):
|
||||
"""Base reader layout that every subsequent reader should follow."""
|
||||
@abstractmethod
|
||||
def read_info(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_snapshot(self, kind):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_halo_id(self, pids):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_halos(self):
|
||||
pass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORG1Reader:
|
||||
"""
|
||||
Object to read in CSiBORG snapshots from the binary files and halo
|
||||
catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot):
|
||||
self.nsim = nsim
|
||||
base_dir = "/mnt/extraspace/hdesmond/"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = 1
|
||||
raise RuntimeError("TODO not implemented")
|
||||
self.source_dir = None
|
||||
elif which_snapshot == "final":
|
||||
sourcedir = join(base_dir, f"ramses_out_{nsim}")
|
||||
self.nsnap = max([int(basename(f).replace("output_", ""))
|
||||
for f in glob(join(sourcedir, "output_*"))])
|
||||
self.source_dir = join(sourcedir,
|
||||
f"output_{str(self.nsnap).zfill(5)}")
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.output_dir = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{self.nsim}" # noqa
|
||||
self.output_snap = join(self.output_dir,
|
||||
f"snapshot_{str(self.nsnap).zfill(5)}.hdf5")
|
||||
self.output_cat = join(self.output_dir,
|
||||
f"fof_{str(self.nsnap).zfill(5)}.hdf5")
|
||||
self.halomaker_dir = join(self.output_dir, "FOF")
|
||||
|
||||
def read_info(self):
|
||||
filename = glob(join(self.source_dir, "info_*"))
|
||||
if len(filename) > 1:
|
||||
raise ValueError("Found too many `info` files.")
|
||||
filename = filename[0]
|
||||
|
||||
with open(filename, "r") as f:
|
||||
info = f.read().split()
|
||||
# Throw anything below ordering line out
|
||||
info = numpy.asarray(info[:info.index("ordering")])
|
||||
# Get indexes of lines with `=`. Indxs before/after be keys/vals
|
||||
eqs = numpy.asarray([i for i in range(info.size) if info[i] == '='])
|
||||
|
||||
keys = info[eqs - 1]
|
||||
vals = info[eqs + 1]
|
||||
return {key: convert_str_to_num(val) for key, val in zip(keys, vals)}
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
with catch_warnings():
|
||||
filterwarnings("ignore", category=UserWarning)
|
||||
sim = pynbody.load(self.source_dir)
|
||||
|
||||
info = self.read_info()
|
||||
|
||||
if kind == "pid":
|
||||
x = numpy.array(sim["iord"], dtype=numpy.uint32)
|
||||
elif kind == "pos":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float32)
|
||||
# Convert box units to Mpc / h
|
||||
box2mpc = (info["unit_l"] / units.kpc.to(units.cm) / info["aexp"]
|
||||
* 1e-3 * info["H0"] / 100)
|
||||
x *= box2mpc
|
||||
elif kind == "mass":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float32)
|
||||
# Convert box units to Msun / h
|
||||
box2msun = (info["unit_d"] * info["unit_l"]**3 / MSUNCGS
|
||||
* info["H0"] / 100)
|
||||
x *= box2msun
|
||||
elif kind == "vel":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float16)
|
||||
# Convert box units to km / s
|
||||
box2kms = (1e-2 * info["unit_l"] / info["unit_t"] / info["aexp"]
|
||||
* 1e-3)
|
||||
x *= box2kms
|
||||
else:
|
||||
raise ValueError(f"Unknown kind `{kind}`. "
|
||||
"Options are: `pid`, `pos`, `vel` or `mass`.")
|
||||
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
if kind in ["pos", "vel"]:
|
||||
print(f"For kind `{kind}` flipping x and z.")
|
||||
x[:, [0, 2]] = x[:, [2, 0]]
|
||||
|
||||
del sim
|
||||
collect()
|
||||
|
||||
return x
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
fpath = join(self.halomaker_dir, "*particle_membership*")
|
||||
fpath = next(iglob(fpath, recursive=True), None)
|
||||
if fpath is None:
|
||||
raise FileNotFoundError(f"Found no Halomaker files in `{self.halomaker_dir}`.") # noqa
|
||||
|
||||
print(f"{now()}: mapping particle IDs to their indices.")
|
||||
pids_idx = {pid: i for i, pid in enumerate(pids)}
|
||||
|
||||
# Unassigned particle IDs are assigned a halo ID of 0.
|
||||
print(f"{now()}: mapping HIDs to their array indices.")
|
||||
hids = numpy.zeros(pids.size, dtype=numpy.int32)
|
||||
|
||||
# Read line-by-line to avoid loading the whole file into memory.
|
||||
with open(fpath, 'r') as file:
|
||||
for line in tqdm(file, desc="Reading membership"):
|
||||
hid, pid = map(int, line.split())
|
||||
hids[pids_idx[pid]] = hid
|
||||
|
||||
del pids_idx
|
||||
collect()
|
||||
|
||||
return hids
|
||||
|
||||
def read_halos(self):
|
||||
info = self.read_info()
|
||||
h = info["H0"] / 100
|
||||
|
||||
fpath = join(self.halomaker_dir, "fort.132")
|
||||
hid = numpy.genfromtxt(fpath, usecols=0, dtype=numpy.int32)
|
||||
pos = numpy.genfromtxt(fpath, usecols=(1, 2, 3), dtype=numpy.float32)
|
||||
totmass = numpy.genfromtxt(fpath, usecols=4, dtype=numpy.float32)
|
||||
m200c = numpy.genfromtxt(fpath, usecols=5, dtype=numpy.float32)
|
||||
|
||||
dtype = {"names": ["index", "x", "y", "z", "totpartmass", "m200c"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 5}
|
||||
out = numpy.full(hid.size, numpy.nan, dtype=dtype)
|
||||
out["index"] = hid
|
||||
out["x"] = pos[:, 0] * h + 677.7 / 2
|
||||
out["y"] = pos[:, 1] * h + 677.7 / 2
|
||||
out["z"] = pos[:, 2] * h + 677.7 / 2
|
||||
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
flip_cols(out, "x", "z")
|
||||
out["totpartmass"] = totmass * 1e11 * h
|
||||
out["m200c"] = m200c * 1e11 * h
|
||||
|
||||
return out
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG2 particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORG2Reader(BaseReader):
|
||||
"""
|
||||
Object to read in CSiBORG2 snapshots. Because this is Gadget4 the final
|
||||
snapshot is already sorted, however we still have to sort the initial
|
||||
snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot, kind):
|
||||
self.nsim = nsim
|
||||
if kind not in ["main", "random", "varysmall"]:
|
||||
raise ValueError(f"Unknown kind `{kind}`.")
|
||||
base_dir = f"/mnt/extraspace/rstiskalek/csiborg2_{kind}"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = 0
|
||||
elif which_snapshot == "final":
|
||||
self.nsnap = 99
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.source_dir = join(
|
||||
base_dir, f"chain_{nsim}", "output",
|
||||
f"snapshot_{str(self.nsnap).zfill(3)}_full.hdf5")
|
||||
|
||||
self.output_dir = join(base_dir, f"chain_{nsim}", "output")
|
||||
self.output_snap = join(
|
||||
self.output_dir,
|
||||
f"snapshot_{str(self.nsnap).zfill(3)}_sorted.hdf5")
|
||||
self.output_cat = None
|
||||
|
||||
def read_info(self):
|
||||
fpath = join(dirname(self.source_dir), "snapshot_99_full.hdf5")
|
||||
|
||||
with File(fpath, 'r') as f:
|
||||
header = f["Header"]
|
||||
params = f["Parameters"]
|
||||
|
||||
out = {"BoxSize": header.attrs["BoxSize"],
|
||||
"MassTable": header.attrs["MassTable"],
|
||||
"NumPart_Total": header.attrs["NumPart_Total"],
|
||||
"Omega_m": params.attrs["Omega0"],
|
||||
"Omega_l": params.attrs["OmegaLambda"],
|
||||
"Omega_b": params.attrs["OmegaBaryon"],
|
||||
"h": params.attrs["HubbleParam"],
|
||||
"redshift": header.attrs["Redshift"],
|
||||
}
|
||||
return out
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
def read_halos(self):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Quijote particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class QuijoteReader:
|
||||
"""
|
||||
Object to read in Quijote snapshots from the binary files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot):
|
||||
self.nsim = nsim
|
||||
quijote_dir = "/mnt/extraspace/rstiskalek/quijote"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = -1
|
||||
snap_str = "ICs"
|
||||
self.source_dir = join(quijote_dir, "Snapshots_fiducial",
|
||||
str(nsim), "ICs", "ics")
|
||||
elif which_snapshot == "final":
|
||||
self.nsnap = 4
|
||||
snap_str = str(self.nsnap).zfill(3)
|
||||
self.source_dir = join(
|
||||
quijote_dir, "Snapshots_fiducial",
|
||||
str(nsim), f"snapdir_{snap_str}", f"snap_{snap_str}")
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.fof_dir = join(quijote_dir, "Halos_fiducial", str(nsim))
|
||||
self.output_dir = f"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_{self.nsim}" # noqa
|
||||
self.output_snap = join(self.output_dir, f"snapshot_{snap_str}.hdf5")
|
||||
self.output_cat = join(self.output_dir, f"fof_{snap_str}.hdf5")
|
||||
|
||||
def read_info(self):
|
||||
header = readgadget.header(self.source_dir)
|
||||
out = {"BoxSize": header.boxsize / 1e3, # Mpc/h
|
||||
"Nall": header.nall[1], # Tot num of particles
|
||||
"PartMass": header.massarr[1] * 1e10, # Part mass in Msun/h
|
||||
"Omega_m": header.omega_m,
|
||||
"Omega_l": header.omega_l,
|
||||
"h": header.hubble,
|
||||
"redshift": header.redshift,
|
||||
}
|
||||
out["TotMass"] = out["Nall"] * out["PartMass"]
|
||||
out["Hubble"] = (100.0 * numpy.sqrt(
|
||||
header.omega_m * (1.0 + header.redshift)**3 + header.omega_l))
|
||||
return out
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
info = self.read_info()
|
||||
ptype = [1] # DM
|
||||
|
||||
if kind == "pid":
|
||||
return readgadget.read_block(self.source_dir, "ID ", ptype)
|
||||
elif kind == "pos":
|
||||
pos = readgadget.read_block(self.source_dir, "POS ", ptype) / 1e3
|
||||
return pos.astype(numpy.float32)
|
||||
elif kind == "vel":
|
||||
vel = readgadget.read_block(self.source_dir, "VEL ", ptype)
|
||||
vel = vel.astype(numpy.float16)
|
||||
vel *= (1 + info["redshift"]) # km / s
|
||||
return vel
|
||||
elif kind == "mass":
|
||||
return numpy.full(info["Nall"], info["PartMass"],
|
||||
dtype=numpy.float32)
|
||||
else:
|
||||
raise ValueError(f"Unknown kind `{kind}`. "
|
||||
"Options are: `pid`, `pos`, `vel` or `mass`.")
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
cat = FoF_catalog(self.fof_dir, self.nsnap)
|
||||
|
||||
group_pids = cat.GroupIDs
|
||||
group_len = cat.GroupLen
|
||||
|
||||
# Create a mapping from particle ID to FoF group ID.
|
||||
print(f"{now()}: mapping particle IDs to their indices.")
|
||||
ks = numpy.insert(numpy.cumsum(group_len), 0, 0)
|
||||
with catch_warnings():
|
||||
# Ignore because we are casting NaN as integer.
|
||||
filterwarnings("ignore", category=RuntimeWarning)
|
||||
pid2hid = numpy.full((group_pids.size, 2), numpy.nan,
|
||||
dtype=numpy.uint64)
|
||||
for i, (k0, kf) in enumerate(zip(ks[:-1], ks[1:])):
|
||||
pid2hid[k0:kf, 0] = i + 1
|
||||
pid2hid[k0:kf, 1] = group_pids[k0:kf]
|
||||
pid2hid = {pid: hid for hid, pid in pid2hid}
|
||||
|
||||
# Create the final array of hids matchign the snapshot array.
|
||||
# Unassigned particles have hid 0.
|
||||
print(f"{now()}: mapping HIDs to their array indices.")
|
||||
hids = numpy.full(pids.size, 0, dtype=numpy.uint32)
|
||||
for i in trange(pids.size):
|
||||
hids[i] = pid2hid.get(pids[i], 0)
|
||||
|
||||
return hids
|
||||
|
||||
def read_halos(self):
|
||||
fof = FoF_catalog(self.fof_dir, self.nsnap, long_ids=False, swap=False,
|
||||
SFR=False, read_IDs=False)
|
||||
|
||||
cols = [("x", numpy.float32),
|
||||
("y", numpy.float32),
|
||||
("z", numpy.float32),
|
||||
("vx", numpy.float32),
|
||||
("vy", numpy.float32),
|
||||
("vz", numpy.float32),
|
||||
("GroupMass", numpy.float32),
|
||||
("npart", numpy.int32),
|
||||
("index", numpy.int32)
|
||||
]
|
||||
data = cols_to_structured(fof.GroupLen.size, cols)
|
||||
|
||||
pos = fof.GroupPos / 1e3
|
||||
vel = fof.GroupVel * (1 + self.read_info()["redshift"])
|
||||
for i, p in enumerate(["x", "y", "z"]):
|
||||
data[p] = pos[:, i]
|
||||
data[f"v{p}"] = vel[:, i]
|
||||
data["GroupMass"] = fof.GroupMass * 1e10
|
||||
data["npart"] = fof.GroupLen
|
||||
# We want to start indexing from 1. Index 0 is reserved for
|
||||
# particles unassigned to any FoF group.
|
||||
data["index"] = 1 + numpy.arange(data.size, dtype=numpy.uint32)
|
||||
return data
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Group Offsets #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def minmax_halo(hid, halo_ids, start_loop=0):
|
||||
"""
|
||||
Find the start and end index of a halo in a sorted array of halo IDs.
|
||||
This is much faster than using `numpy.where` and then `numpy.min` and
|
||||
`numpy.max`.
|
||||
"""
|
||||
start = None
|
||||
end = None
|
||||
|
||||
for i in range(start_loop, halo_ids.size):
|
||||
n = halo_ids[i]
|
||||
if n == hid:
|
||||
if start is None:
|
||||
start = i
|
||||
end = i
|
||||
elif n > hid:
|
||||
break
|
||||
return start, end
|
||||
|
||||
|
||||
def make_offset_map(part_hids):
|
||||
"""
|
||||
Make group offsets for a list of particles' halo IDs. This is a
|
||||
2-dimensional array, where the first column is the halo ID, the second
|
||||
column is the start index of the halo in the particle list, and the third
|
||||
index is the end index of the halo in the particle list. The start index is
|
||||
inclusive, while the end index is exclusive.
|
||||
"""
|
||||
unique_halo_ids = numpy.unique(part_hids)
|
||||
unique_halo_ids = unique_halo_ids[unique_halo_ids != 0]
|
||||
with catch_warnings():
|
||||
filterwarnings("ignore", category=RuntimeWarning)
|
||||
halo_map = numpy.full((unique_halo_ids.size, 3), numpy.nan,
|
||||
dtype=numpy.uint32)
|
||||
start_loop, niters = 0, unique_halo_ids.size
|
||||
for i in trange(niters):
|
||||
hid = unique_halo_ids[i]
|
||||
k0, kf = minmax_halo(hid, part_hids, start_loop=start_loop)
|
||||
halo_map[i, :] = hid, k0, kf
|
||||
start_loop = kf
|
||||
|
||||
return halo_map, unique_halo_ids
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Process the final snapshot and sort it by groups #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def process_final_snapshot(nsim, simname):
|
||||
"""
|
||||
Read in the snapshot particles, sort them by their halo ID and dump
|
||||
into a HDF5 file. Stores the first and last index of each halo in the
|
||||
particle array for fast slicing of the array to acces particles of a single
|
||||
halo.
|
||||
"""
|
||||
if simname == "csiborg1":
|
||||
reader = CSiBORG1Reader(nsim, "final")
|
||||
elif simname == "quijote":
|
||||
reader = QuijoteReader(nsim, "final")
|
||||
else:
|
||||
raise RuntimeError(f"Simulation `{simname}` is not supported.")
|
||||
|
||||
if not exists(reader.output_dir):
|
||||
makedirs(reader.output_dir)
|
||||
|
||||
print("---- Processing Final Snapshot Information ----")
|
||||
print(f"Simulation index: {nsim}")
|
||||
print(f"Simulation name: {simname}")
|
||||
print(f"Output snapshot: {reader.output_snap}")
|
||||
print(f"Output catalogue: {reader.output_cat}")
|
||||
print("-----------------------------------------------")
|
||||
print(flush=True)
|
||||
|
||||
# First off load the particle IDs from the raw data.
|
||||
pids = reader.read_snapshot("pid")
|
||||
|
||||
# Then, load the halo ids and make sure their ordering is the same as the
|
||||
# particle IDs ordering.
|
||||
print(f"{now()}: loading HIDs.")
|
||||
halo_ids = reader.read_halo_id(pids)
|
||||
print(f"{now()}: sorting HIDs.")
|
||||
|
||||
# Get a mask that sorts the halo ids and then write the information to
|
||||
# the data files sorted by it.
|
||||
sort_indxs = numpy.argsort(halo_ids)
|
||||
halo_ids = halo_ids[sort_indxs]
|
||||
|
||||
with File(reader.output_snap, 'w') as f:
|
||||
print(f"{now()}: creating dataset `ParticleIDs`...",
|
||||
flush=True)
|
||||
f.create_dataset("ParticleIDs", data=pids[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
del pids
|
||||
collect()
|
||||
|
||||
print(f"{now()}: creating dataset `Coordinates`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Coordinates", data=reader.read_snapshot("pos")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
print(f"{now()}: creating dataset `Velocities`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Velocities", data=reader.read_snapshot("vel")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
print(f"{now()}: creating dataset `Masses`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Masses", data=reader.read_snapshot("mass")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
if simname == "csiborg1":
|
||||
header = f.create_dataset("Header", (0,))
|
||||
header.attrs["BoxSize"] = 677.7 # Mpc/h
|
||||
header.attrs["Omega0"] = 0.307
|
||||
header.attrs["OmegaBaryon"] = 0.0
|
||||
header.attrs["OmegaLambda"] = 0.693
|
||||
header.attrs["HubleParam"] = 0.6777
|
||||
header.attrs["Redshift"] = 0.0
|
||||
elif simname == "quijote":
|
||||
info = reader.read_info()
|
||||
|
||||
header = f.create_dataset("Header", (0,))
|
||||
header.attrs["BoxSize"] = info["BoxSize"]
|
||||
header.attrs["Omega0"] = info["Omega_m"]
|
||||
header.attrs["OmegaLambda"] = info["Omega_l"]
|
||||
header.attrs["OmegaBaryon"] = 0.0
|
||||
header.attrs["HubleParam"] = info["h"]
|
||||
header.attrs["Redshift"] = info["redshift"]
|
||||
else:
|
||||
raise ValueError(f"Unknown simname `{simname}`.")
|
||||
|
||||
print(f"{now()}: done with `{reader.output_snap}`.",
|
||||
flush=True)
|
||||
|
||||
# Lastly, create the halo mapping and default catalogue.
|
||||
print(f"{datetime.now()}: creating `GroupOffset`...")
|
||||
halo_map, unique_halo_ids = make_offset_map(halo_ids)
|
||||
# Dump the halo mapping.
|
||||
with File(reader.output_cat, "w") as f:
|
||||
f.create_dataset("GroupOffset", data=halo_map)
|
||||
|
||||
# Add the halo finder catalogue
|
||||
print(f"{now()}: adding the halo finder catalogue.")
|
||||
with File(reader.output_cat, "r+") as f:
|
||||
cat = reader.read_halos()
|
||||
hid2pos = {hid: i for i, hid in enumerate(unique_halo_ids)}
|
||||
|
||||
for key in cat.dtype.names:
|
||||
x = numpy.full(unique_halo_ids.size, numpy.nan,
|
||||
dtype=cat[key].dtype)
|
||||
|
||||
for i in range(len(cat)):
|
||||
j = hid2pos[cat["index"][i]]
|
||||
x[j] = cat[key][i]
|
||||
f.create_dataset(key, data=x)
|
||||
|
||||
|
||||
def process_initial_snapshot(nsim, simname):
|
||||
"""
|
||||
Sort the initial snapshot particles according to their final snapshot and
|
||||
add them to the final snapshot's HDF5 file.
|
||||
"""
|
||||
if simname == "csiborg1":
|
||||
reader = CSiBORG1Reader(nsim, "initial")
|
||||
output_snap_final = CSiBORG1Reader(nsim, "final").output_snap
|
||||
elif simname == "quijote":
|
||||
reader = QuijoteReader(nsim, "initial")
|
||||
output_snap_final = QuijoteReader(nsim, "final").output_snap
|
||||
elif "csiborg2" in simname:
|
||||
reader = CSiBORG2Reader(nsim, "initial", simname.split("_")[1])
|
||||
output_snap_final = CSiBORG2Reader(nsim, "final", simname.split("_")[1]).output_snap # noqa
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
else:
|
||||
raise RuntimeError(f"Simulation `{simname}` is not supported.")
|
||||
|
||||
print("---- Processing Initial Snapshot Information ----")
|
||||
print(f"Simulation index: {nsim}")
|
||||
print(f"Simulation name: {simname}")
|
||||
print(f"Output snapshot: {reader.output_snap}")
|
||||
print(f"Output catalogue: {reader.output_cat}")
|
||||
print("-----------------------------------------------")
|
||||
print(flush=True)
|
||||
|
||||
print(f"{now()}: loading and sorting the initial PID.")
|
||||
sort_indxs = numpy.argsort(reader.read_snapshot("pid"))
|
||||
|
||||
print(f"{now()}: loading the final particles.")
|
||||
with File(output_snap_final, "r") as f:
|
||||
sort_indxs_final = f["ParticleIDs"][:]
|
||||
f.close()
|
||||
|
||||
print(f"{now()}: sorting the particles according to the final snapshot.")
|
||||
sort_indxs_final = numpy.argsort(numpy.argsort(sort_indxs_final))
|
||||
sort_indxs = sort_indxs[sort_indxs_final]
|
||||
|
||||
del sort_indxs_final
|
||||
collect()
|
||||
|
||||
print(f"{now()}: loading and sorting the initial particle position.")
|
||||
pos = reader.read_snapshot("pos")[sort_indxs]
|
||||
|
||||
del sort_indxs
|
||||
collect()
|
||||
|
||||
# In Quijote some particles are positioned precisely at the edge of the
|
||||
# box. Move them to be just inside.
|
||||
if simname == "quijote":
|
||||
boxsize = reader.read_info()["BoxSize"]
|
||||
mask = pos >= boxsize
|
||||
if numpy.any(mask):
|
||||
spacing = numpy.spacing(pos[mask])
|
||||
assert numpy.max(spacing) <= 1e-3
|
||||
pos[mask] -= spacing
|
||||
|
||||
print(f"{now()}: dumping particles `{reader.output_snap}`.")
|
||||
with File(reader.output_snap, 'w') as f:
|
||||
f.create_dataset("Coordinates", data=pos,
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Process the initial snapshot and sort it like the final snapshot #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser(description="Tool to manage the `raw` simulation data.") # noqa
|
||||
parser.add_argument("--nsim", type=int, required=True,
|
||||
help="Simulation index.")
|
||||
parser.add_argument("--simname", type=str, required=True,
|
||||
choices=["csiborg1", "quijote"],
|
||||
help="Simulation name.")
|
||||
parser.add_argument("--mode", type=int, required=True, choices=[0, 1, 2],
|
||||
help="0: process final snapshot, 1: process initial snapshot, 2: process both.") # noqa
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.mode == 0:
|
||||
process_final_snapshot(args.nsim, args.simname)
|
||||
elif args.mode == 1:
|
||||
process_initial_snapshot(args.nsim, args.simname)
|
||||
else:
|
||||
process_final_snapshot(args.nsim, args.simname)
|
||||
process_initial_snapshot(args.nsim, args.simname)
|
89
scripts_independent/run_field_sph.py
Normal file
89
scripts_independent/run_field_sph.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to write the SLURM submission script and submit it to the queue to
|
||||
calculate the SPH density & velocity field.
|
||||
"""
|
||||
from os import system
|
||||
|
||||
|
||||
def write_submit(chain_index, kind, resolution, nthreads):
|
||||
if kind not in ["main", "random", "varysmall"]:
|
||||
raise RuntimeError(f"Unknown kind `{kind}`.")
|
||||
|
||||
txt = f"""#!/bin/sh
|
||||
|
||||
#SBATCH --ntasks-per-node=1
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --cpus-per-task={nthreads}
|
||||
#SBATCH --mem-per-cpu=7000
|
||||
#SBATCH -J SPH_{chain_index}
|
||||
#SBATCH -o output_{chain_index}_%J.out
|
||||
#SBATCH -e error_{chain_index}_%J.err
|
||||
#SBATCH -p cosma8-serial
|
||||
#SBATCH -A dp016
|
||||
#SBATCH -t 16:00:00
|
||||
#SBATCH --mail-type=BEGIN,END,FAIL
|
||||
#SBATCH --mail-user=richard.stiskalek@physics.ox.ac.uk
|
||||
|
||||
|
||||
module purge
|
||||
module load intel_comp/2019
|
||||
module load intel_mpi/2019
|
||||
module load hdf5
|
||||
module load fftw
|
||||
module load gsl
|
||||
module load cmake
|
||||
module load python/3.10.12
|
||||
module list
|
||||
|
||||
source /cosma/home/dp016/dc-stis1/csiborgtools/venv_csiborgtools/bin/activate
|
||||
export OMP_NUM_THREADS={nthreads}
|
||||
export OMP_NESTED=true
|
||||
|
||||
snapshot_path="/cosma8/data/dp016/dc-stis1/csiborg2_{kind}/chain_{chain_index}/output/snapshot_099_full.hdf5"
|
||||
output_path="/cosma8/data/dp016/dc-stis1/csiborg2_{kind}/field/chain_{chain_index}_{resolution}.hdf5"
|
||||
resolution={resolution}
|
||||
scratch_space="/snap8/scratch/dp016/dc-stis1/"
|
||||
SPH_executable="/cosma8/data/dp016/dc-stis1/cosmotool/bld2/sample/simple3DFilter"
|
||||
snapshot_kind="gadget4"
|
||||
|
||||
python3 field_sph.py --snapshot_path $snapshot_path --output_path $output_path --resolution $resolution --scratch_space $scratch_space --SPH_executable $SPH_executable --snapshot_kind $snapshot_kind
|
||||
"""
|
||||
fname = f"submit_SPH_{kind}_{chain_index}.sh"
|
||||
print(f"Writing file: `{fname}`.")
|
||||
with open(fname, "w") as txtfile:
|
||||
txtfile.write(txt)
|
||||
# Make the file executable
|
||||
system(f"chmod +x {fname}")
|
||||
return fname
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# kind = "main"
|
||||
# chains = [15617, 15717, 15817, 15917, 16017, 16117, 16217, 16317, 16417, 16517, 16617, 16717, 16817, 16917, 17017, 17117, 17217, 17317, 17417]
|
||||
|
||||
# kind = "varysmall"
|
||||
# chains = ["16417_001", "16417_025", "16417_050", "16417_075", "16417_100", "16417_125", "16417_150", "16417_175", "16417_200", "16417_225", "16417_250", "16417_275", "16417_300", "16417_325", "16417_350", "16417_375", "16417_400", "16417_425", "16417_450", "16417_475"]
|
||||
|
||||
kind = "random"
|
||||
chains = [1, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475]
|
||||
|
||||
resolution = 1024
|
||||
nthreads = 32
|
||||
|
||||
for chain_index in chains:
|
||||
fname = write_submit(chain_index, kind, resolution, nthreads)
|
||||
system(f"sbatch {fname}")
|
31
scripts_independent/run_process_snapshot.py
Normal file
31
scripts_independent/run_process_snapshot.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from os import system
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Quijote chains
|
||||
chains = [1]
|
||||
simname = "quijote"
|
||||
mode = 2
|
||||
|
||||
env = "/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||
memory = 64
|
||||
|
||||
for chain in chains:
|
||||
out = f"output_{simname}_{chain}_%j.out"
|
||||
cmd = f"addqueue -q berg -o {out} -n 1x1 -m {memory} {env} process_snapshot.py --nsim {chain} --simname {simname} --mode {mode}" # noqa
|
||||
print(cmd)
|
||||
system(cmd)
|
||||
print()
|
77
scripts_independent/sort_ramseshdf5.py
Normal file
77
scripts_independent/sort_ramseshdf5.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
|
||||
def add_initial_snapshot(nsim, simname, halo_finder, verbose):
|
||||
"""
|
||||
Sort the initial snapshot particles according to their final snapshot and
|
||||
add them to the final snapshot's HDF5 file.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
fname = paths.processed_output(nsim, simname, halo_finder)
|
||||
|
||||
if simname == "csiborg":
|
||||
partreader = csiborgtools.read.CSiBORGReader(paths)
|
||||
else:
|
||||
partreader = csiborgtools.read.QuijoteReader(paths)
|
||||
|
||||
fprint(f"processing simulation `{nsim}`.", verbose)
|
||||
if simname == "csiborg":
|
||||
nsnap0 = 1
|
||||
elif simname == "quijote":
|
||||
nsnap0 = -1
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation `{simname}`.")
|
||||
|
||||
fprint("loading and sorting the initial PID.", verbose)
|
||||
sort_indxs = numpy.argsort(partreader.read_snapshot(nsnap0, nsim, "pid"))
|
||||
|
||||
fprint("loading the final particles.", verbose)
|
||||
with h5py.File(fname, "r") as f:
|
||||
sort_indxs_final = f["snapshot_final/pid"][:]
|
||||
f.close()
|
||||
|
||||
fprint("sorting the particles according to the final snapshot.", verbose)
|
||||
sort_indxs_final = numpy.argsort(numpy.argsort(sort_indxs_final))
|
||||
sort_indxs = sort_indxs[sort_indxs_final]
|
||||
|
||||
del sort_indxs_final
|
||||
collect()
|
||||
|
||||
fprint("loading and sorting the initial particle position.", verbose)
|
||||
pos = partreader.read_snapshot(nsnap0, nsim, "pos")[sort_indxs]
|
||||
|
||||
del sort_indxs
|
||||
collect()
|
||||
|
||||
# In Quijote some particles are position precisely at the edge of the
|
||||
# box. Move them to be just inside.
|
||||
if simname == "quijote":
|
||||
mask = pos >= 1
|
||||
if numpy.any(mask):
|
||||
spacing = numpy.spacing(pos[mask])
|
||||
assert numpy.max(spacing) <= 1e-5
|
||||
pos[mask] -= spacing
|
||||
|
||||
fprint(f"dumping particles for `{nsim}` to `{fname}`.", verbose)
|
||||
with h5py.File(fname, "r+") as f:
|
||||
if "snapshot_initial" in f.keys():
|
||||
del f["snapshot_initial"]
|
||||
group = f.create_group("snapshot_initial")
|
||||
group.attrs["header"] = "Initial snapshot data."
|
||||
dset = group.create_dataset("pos", data=pos)
|
||||
dset.attrs["header"] = "DM particle positions in box units."
|
||||
|
||||
f.close()
|
256
scripts_plots/paper_environment.ipynb
Normal file
256
scripts_plots/paper_environment.ipynb
Normal file
File diff suppressed because one or more lines are too long
|
@ -307,7 +307,7 @@ def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
|||
print(f"Plotting projected field `{kind}`. ", flush=True)
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
|
@ -437,128 +437,6 @@ def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
|||
plt.close()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Sky distribution #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def get_sky_label(kind, volume_weight: bool):
|
||||
"""
|
||||
Get the sky label for a given field kind.
|
||||
"""
|
||||
if volume_weight:
|
||||
if kind == "density":
|
||||
label = r"$\log \int_{0}^{R} r^2 \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
if kind == "overdensity":
|
||||
label = r"$\log \int_{0}^{R} r^2 \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa
|
||||
elif kind == "potential":
|
||||
label = r"$\int_{0}^{R} r^2 \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
elif kind == "radvel":
|
||||
label = r"$\int_{0}^{R} r^2 v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
else:
|
||||
label = None
|
||||
else:
|
||||
if kind == "density":
|
||||
label = r"$\log \int_{0}^{R} \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
if kind == "overdensity":
|
||||
label = r"$\log \int_{0}^{R} \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa
|
||||
elif kind == "potential":
|
||||
label = r"$\int_{0}^{R} \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
elif kind == "radvel":
|
||||
label = r"$\int_{0}^{R} v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
|
||||
else:
|
||||
label = None
|
||||
return label
|
||||
|
||||
|
||||
def plot_sky_distribution(field, nsim, grid, nside, smooth_scale=None,
|
||||
MAS="PCS", plot_groups=True, dmin=0, dmax=220,
|
||||
plot_halos=None, volume_weight=True, pdf=False):
|
||||
r"""
|
||||
Plot the sky distribution of a given field kind on the sky along with halos
|
||||
and selected observations.
|
||||
|
||||
TODO
|
||||
----
|
||||
- Add distance for groups.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : str
|
||||
Field kind.
|
||||
nsim : int
|
||||
Simulation index.
|
||||
grid : int
|
||||
Grid size.
|
||||
nside : int
|
||||
Healpix nside of the sky projection.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
MAS : str, optional
|
||||
Mass assignment scheme.
|
||||
plot_groups : bool, optional
|
||||
Whether to plot the 2M++ groups.
|
||||
dmin : float, optional
|
||||
Minimum projection distance in :math:`\mathrm{Mpc}/h`.
|
||||
dmax : float, optional
|
||||
Maximum projection distance in :math:`\mathrm{Mpc}/h`.
|
||||
plot_halos : list, optional
|
||||
Minimum halo mass to plot in :math:`M_\odot`.
|
||||
volume_weight : bool, optional
|
||||
Whether to volume weight the field.
|
||||
pdf : bool, optional
|
||||
Whether to save the figure as a pdf.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if field == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
|
||||
angpos = csiborgtools.field.nside2radec(nside)
|
||||
dist = numpy.linspace(dmin, dmax, 500)
|
||||
out = csiborgtools.field.make_sky(field, angpos=angpos, dist=dist, box=box,
|
||||
volume_weight=volume_weight)
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
label = get_sky_label(kind, volume_weight)
|
||||
if kind in ["density", "overdensity"]:
|
||||
out = numpy.log10(out)
|
||||
healpy.mollview(out, fig=0, title="", unit=label, rot=90)
|
||||
|
||||
if plot_halos is not None:
|
||||
bounds = {"dist": (dmin, dmax),
|
||||
"totpartmass": (plot_halos, None)}
|
||||
cat = csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths,
|
||||
bounds=bounds)
|
||||
X = cat.position(cartesian=False)
|
||||
healpy.projscatter(numpy.deg2rad(X[:, 2] + 90),
|
||||
numpy.deg2rad(X[:, 1]),
|
||||
s=5, c="red", label="CSiBORG haloes")
|
||||
|
||||
if plot_groups:
|
||||
groups = csiborgtools.read.TwoMPPGroups(fpath="/mnt/extraspace/rstiskalek/catalogs/2M++_group_catalog.dat") # noqa
|
||||
healpy.projscatter(numpy.deg2rad(groups["DEC"] + 90),
|
||||
numpy.deg2rad(groups["RA"]), s=1, c="blue",
|
||||
label="2M++ groups")
|
||||
|
||||
if plot_halos is not None or plot_groups:
|
||||
plt.legend(markerscale=5)
|
||||
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout, f"sky_{kind}_{nsim}_from_{dmin}_to_{dmax}_vol{volume_weight}.{ext}") # noqa
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Command line interface #
|
||||
###############################################################################
|
||||
|
|
Loading…
Reference in a new issue