mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:58:02 +00:00
Overlapper improvements (#53)
* Store indices as f32 * Fix init sorting * Organise imports * Rename pathing * Add particle loading * Improve particle reading * Add h5py reader * edit particle path * Update particles loading * update particles loading * Fix particle dumping * Add init fitting * Fix bug due to insufficient precision * Add commnet * Add comment * Add clumps catalogue to halo cat * Add comment * Make sure PIDS never forced to float32 * fix pid reading * fix pid reading * Update matching to work with new arrays * Stop using cubical sub boxes, turn off nshift if no smoothing * Improve caching * Move function definitions * Simplify calculation * Add import * Small updates to the halo * Simplify calculation * Simplify looping calculation * fix tonew * Add initial data * Add skip condition * Add unit conversion * Add loading background in batches * Rename mmain index * Switch overlaps to h5 * Add finite lagpatch check * fix column name * Add verbosity flags * Save halo IDs instead. * Switch back to npz * Delte nbs * Reduce size of the box * Load correct bckg of halos being matched * Remove verbosity * verbosity edits * Change lower thresholds
This commit is contained in:
parent
1c9dacfde5
commit
56e39a8b1d
20 changed files with 864 additions and 3816 deletions
|
@ -15,13 +15,9 @@
|
||||||
from warnings import warn
|
from warnings import warn
|
||||||
|
|
||||||
from csiborgtools.clustering.knn import kNN_CDF # noqa
|
from csiborgtools.clustering.knn import kNN_CDF # noqa
|
||||||
from csiborgtools.clustering.utils import ( # noqa
|
from csiborgtools.clustering.utils import (BaseRVS, RVSinbox, # noqa
|
||||||
BaseRVS,
|
RVSinsphere, RVSonsphere,
|
||||||
RVSinbox,
|
normalised_marks)
|
||||||
RVSinsphere,
|
|
||||||
RVSonsphere,
|
|
||||||
normalised_marks,
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import Corrfunc # noqa
|
import Corrfunc # noqa
|
||||||
|
|
|
@ -12,6 +12,6 @@
|
||||||
# You should have received a copy of the GNU General Public License along
|
# You should have received a copy of the GNU General Public License along
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
from .halo import Clump, Halo # noqa
|
from .halo import Clump, Halo, dist_centmass # noqa
|
||||||
from .haloprofile import NFWPosterior, NFWProfile # noqa
|
from .haloprofile import NFWPosterior, NFWProfile # noqa
|
||||||
from .utils import split_jobs # noqa
|
from .utils import split_jobs # noqa
|
||||||
|
|
|
@ -15,6 +15,7 @@
|
||||||
"""A clump object."""
|
"""A clump object."""
|
||||||
from abc import ABC
|
from abc import ABC
|
||||||
|
|
||||||
|
from numba import jit
|
||||||
import numpy
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
@ -101,16 +102,21 @@ class BaseStructure(ABC):
|
||||||
"""
|
"""
|
||||||
return numpy.vstack([self[p] for p in ("vx", "vy", "vz")]).T
|
return numpy.vstack([self[p] for p in ("vx", "vy", "vz")]).T
|
||||||
|
|
||||||
|
@property
|
||||||
def r(self):
|
def r(self):
|
||||||
"""
|
"""
|
||||||
Calculate the radial separation of the particles from the centre of the
|
Radial separation of particles from the centre of the object.
|
||||||
object.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
r : 1-dimensional array of shape `(n_particles, )`.
|
r : 1-dimensional array of shape `(n_particles, )`.
|
||||||
"""
|
"""
|
||||||
return numpy.linalg.norm(self.pos, axis=1)
|
return self._get_r(self.pos)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@jit(nopython=True)
|
||||||
|
def _get_r(pos):
|
||||||
|
return (pos[:, 0]**2 + pos[:, 1]**2 + pos[:, 2]**2)**0.5
|
||||||
|
|
||||||
def cmass(self, rmax, rmin):
|
def cmass(self, rmax, rmin):
|
||||||
"""
|
"""
|
||||||
|
@ -130,7 +136,7 @@ class BaseStructure(ABC):
|
||||||
-------
|
-------
|
||||||
cm : 1-dimensional array of shape `(3, )`
|
cm : 1-dimensional array of shape `(3, )`
|
||||||
"""
|
"""
|
||||||
r = self.r()
|
r = self.r
|
||||||
mask = (r >= rmin) & (r <= rmax)
|
mask = (r >= rmin) & (r <= rmax)
|
||||||
return numpy.average(self.pos[mask], axis=0, weights=self["M"][mask])
|
return numpy.average(self.pos[mask], axis=0, weights=self["M"][mask])
|
||||||
|
|
||||||
|
@ -149,7 +155,7 @@ class BaseStructure(ABC):
|
||||||
-------
|
-------
|
||||||
J : 1-dimensional array or shape `(3, )`
|
J : 1-dimensional array or shape `(3, )`
|
||||||
"""
|
"""
|
||||||
r = self.r()
|
r = self.r
|
||||||
mask = (r >= rmin) & (r <= rmax)
|
mask = (r >= rmin) & (r <= rmax)
|
||||||
pos = self.pos[mask] - self.cmass(rmax, rmin)
|
pos = self.pos[mask] - self.cmass(rmax, rmin)
|
||||||
# Velocitities in the object CM frame
|
# Velocitities in the object CM frame
|
||||||
|
@ -172,17 +178,17 @@ class BaseStructure(ABC):
|
||||||
-------
|
-------
|
||||||
enclosed_mass : float
|
enclosed_mass : float
|
||||||
"""
|
"""
|
||||||
r = self.r()
|
r = self.r
|
||||||
return numpy.sum(self["M"][(r >= rmin) & (r <= rmax)])
|
return numpy.sum(self["M"][(r >= rmin) & (r <= rmax)])
|
||||||
|
|
||||||
def lambda_bullock(self, radius, npart_min=10):
|
def lambda_bullock(self, radmax, npart_min=10):
|
||||||
r"""
|
r"""
|
||||||
Bullock spin, see Eq. 5 in [1], in a radius of `radius`, which should
|
Bullock spin, see Eq. 5 in [1], in a radius of `radius`, which should
|
||||||
define to some overdensity radius.
|
define to some overdensity radius.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
radius : float
|
radmax : float
|
||||||
Radius in which to calculate the spin.
|
Radius in which to calculate the spin.
|
||||||
npart_min : int
|
npart_min : int
|
||||||
Minimum number of enclosed particles for a radius to be
|
Minimum number of enclosed particles for a radius to be
|
||||||
|
@ -198,14 +204,13 @@ class BaseStructure(ABC):
|
||||||
Bullock, J. S.; Dekel, A.; Kolatt, T. S.; Kravtsov, A. V.;
|
Bullock, J. S.; Dekel, A.; Kolatt, T. S.; Kravtsov, A. V.;
|
||||||
Klypin, A. A.; Porciani, C.; Primack, J. R.
|
Klypin, A. A.; Porciani, C.; Primack, J. R.
|
||||||
"""
|
"""
|
||||||
mask = self.r() <= radius
|
mask = self.r <= radmax
|
||||||
if numpy.sum(mask) < npart_min:
|
if numpy.sum(mask) < npart_min:
|
||||||
return numpy.nan
|
return numpy.nan
|
||||||
mass = self.enclosed_mass(radius)
|
mass = self.enclosed_mass(radmax)
|
||||||
V = numpy.sqrt(self.box.box_G * mass / radius)
|
circvel = numpy.sqrt(self.box.box_G * mass / radmax)
|
||||||
out = numpy.linalg.norm(self.angular_momentum(radius))
|
angmom_norm = numpy.linalg.norm(self.angular_momentum(radmax))
|
||||||
out /= numpy.sqrt(2) * mass * V * radius
|
return angmom_norm / (numpy.sqrt(2) * mass * circvel * radmax)
|
||||||
return out
|
|
||||||
|
|
||||||
def spherical_overdensity_mass(self, delta_mult, npart_min=10,
|
def spherical_overdensity_mass(self, delta_mult, npart_min=10,
|
||||||
kind="crit"):
|
kind="crit"):
|
||||||
|
@ -236,18 +241,18 @@ class BaseStructure(ABC):
|
||||||
assert kind in ["crit", "matter"]
|
assert kind in ["crit", "matter"]
|
||||||
|
|
||||||
# We first sort the particles in an increasing separation
|
# We first sort the particles in an increasing separation
|
||||||
rs = self.r()
|
rs = self.r
|
||||||
order = numpy.argsort(rs)
|
order = numpy.argsort(rs)
|
||||||
rs = rs[order]
|
rs = rs[order]
|
||||||
|
|
||||||
cmass = numpy.cumsum(self["M"][order]) # Cumulative mass
|
cmass = numpy.cumsum(self["M"][order]) # Cumulative mass
|
||||||
# We calculate the enclosed volume and indices where it is above target
|
# We calculate the enclosed volume and indices where it is above target
|
||||||
vol = 4 * numpy.pi / 3 * (rs**3 - rs[0] ** 3)
|
vol = 4 * numpy.pi / 3 * rs**3
|
||||||
|
|
||||||
target_density = delta_mult * self.box.box_rhoc
|
target_density = delta_mult * self.box.box_rhoc
|
||||||
if kind == "matter":
|
if kind == "matter":
|
||||||
target_density *= self.box.cosmo.Om0
|
target_density *= self.box.cosmo.Om0
|
||||||
with numpy.errstate(divide="ignore"):
|
ks = numpy.where(cmass > target_density * vol)[0]
|
||||||
ks = numpy.where(cmass / vol > target_density)[0]
|
|
||||||
if ks.size == 0: # Never above the threshold?
|
if ks.size == 0: # Never above the threshold?
|
||||||
return numpy.nan, numpy.nan
|
return numpy.nan, numpy.nan
|
||||||
k = numpy.max(ks)
|
k = numpy.max(ks)
|
||||||
|
@ -257,7 +262,7 @@ class BaseStructure(ABC):
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
keys = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
keys = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
||||||
if key not in self.keys:
|
if key not in keys:
|
||||||
raise RuntimeError(f"Invalid key `{key}`!")
|
raise RuntimeError(f"Invalid key `{key}`!")
|
||||||
return self.particles[:, keys.index(key)]
|
return self.particles[:, keys.index(key)]
|
||||||
|
|
||||||
|
@ -304,3 +309,31 @@ class Halo(BaseStructure):
|
||||||
self.particles = particles
|
self.particles = particles
|
||||||
self.info = info
|
self.info = info
|
||||||
self.box = box
|
self.box = box
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Other, supplementary functions #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def dist_centmass(clump):
|
||||||
|
"""
|
||||||
|
Calculate the clump (or halo) particles' distance from the centre of mass.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
clump : 2-dimensional array of shape (n_particles, 7)
|
||||||
|
Particle array. The first four columns must be `x`, `y`, `z` and `M`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dist : 1-dimensional array of shape `(n_particles, )`
|
||||||
|
Particle distance from the centre of mass.
|
||||||
|
cm : len-3 list
|
||||||
|
Center of mass coordinates.
|
||||||
|
"""
|
||||||
|
mass = clump[:, 3]
|
||||||
|
x, y, z = clump[:, 0], clump[:, 1], clump[:, 2]
|
||||||
|
cmx, cmy, cmz = [numpy.average(xi, weights=mass) for xi in (x, y, z)]
|
||||||
|
dist = ((x - cmx)**2 + (y - cmy)**2 + (z - cmz)**2)**0.5
|
||||||
|
return dist, [cmx, cmy, cmz]
|
||||||
|
|
|
@ -348,7 +348,7 @@ class NFWPosterior(NFWProfile):
|
||||||
Best fit NFW central density.
|
Best fit NFW central density.
|
||||||
"""
|
"""
|
||||||
assert isinstance(clump, Clump)
|
assert isinstance(clump, Clump)
|
||||||
r = clump.r()
|
r = clump.r
|
||||||
rmin = numpy.min(r[r > 0]) # First particle that is not at r = 0
|
rmin = numpy.min(r[r > 0]) # First particle that is not at r = 0
|
||||||
rmax, mtot = clump.spherical_overdensity_mass(200)
|
rmax, mtot = clump.spherical_overdensity_mass(200)
|
||||||
mask = (rmin <= r) & (r <= rmax)
|
mask = (rmin <= r) & (r <= rmax)
|
||||||
|
|
|
@ -12,14 +12,8 @@
|
||||||
# You should have received a copy of the GNU General Public License along
|
# You should have received a copy of the GNU General Public License along
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
from .match import ( # noqa
|
from .match import (ParticleOverlap, RealisationsMatcher, # noqa
|
||||||
ParticleOverlap,
|
calculate_overlap, calculate_overlap_indxs,
|
||||||
RealisationsMatcher,
|
cosine_similarity)
|
||||||
calculate_overlap,
|
|
||||||
calculate_overlap_indxs,
|
|
||||||
cosine_similarity,
|
|
||||||
dist_centmass,
|
|
||||||
dist_percentile,
|
|
||||||
)
|
|
||||||
from .num_density import binned_counts, number_density # noqa
|
from .num_density import binned_counts, number_density # noqa
|
||||||
from .utils import concatenate_parts # noqa
|
from .utils import concatenate_parts # noqa
|
||||||
|
|
|
@ -16,12 +16,19 @@
|
||||||
Support for matching halos between CSiBORG IC realisations.
|
Support for matching halos between CSiBORG IC realisations.
|
||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from functools import lru_cache
|
||||||
|
from math import ceil
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from numba import jit
|
from numba import jit
|
||||||
from scipy.ndimage import gaussian_filter
|
from scipy.ndimage import gaussian_filter
|
||||||
from tqdm import tqdm, trange
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
|
from ..read import load_parent_particles
|
||||||
|
|
||||||
|
BCKG_HALFSIZE = 475
|
||||||
|
BOX_SIZE = 2048
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Realisations matcher for calculating overlaps #
|
# Realisations matcher for calculating overlaps #
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -105,8 +112,8 @@ class RealisationsMatcher:
|
||||||
"""
|
"""
|
||||||
return self._overlapper
|
return self._overlapper
|
||||||
|
|
||||||
def cross(self, cat0, catx, halos0_archive, halosx_archive, delta_bckg,
|
def cross(self, cat0, catx, particles0, particlesx, clump_map0, clump_mapx,
|
||||||
verbose=True):
|
delta_bckg, cache_size=10000, verbose=True):
|
||||||
r"""
|
r"""
|
||||||
Find all neighbours whose CM separation is less than `nmult` times the
|
Find all neighbours whose CM separation is less than `nmult` times the
|
||||||
sum of their initial Lagrangian patch sizes and calculate their
|
sum of their initial Lagrangian patch sizes and calculate their
|
||||||
|
@ -119,19 +126,23 @@ class RealisationsMatcher:
|
||||||
Halo catalogue of the reference simulation.
|
Halo catalogue of the reference simulation.
|
||||||
catx : :py:class:`csiborgtools.read.HaloCatalogue`
|
catx : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
Halo catalogue of the cross simulation.
|
Halo catalogue of the cross simulation.
|
||||||
halos0_archive : `NpzFile` object
|
particles0 : 2-dimensional array
|
||||||
Archive of halos' particles of the reference simulation, keys must
|
Array of particles in box units in the reference simulation.
|
||||||
include `x`, `y`, `z` and `M`. The positions must already be
|
The columns must be `x`, `y`, `z` and `M`.
|
||||||
converted to cell numbers.
|
particlesx : 2-dimensional array
|
||||||
halosx_archive : `NpzFile` object
|
Array of particles in box units in the cross simulation.
|
||||||
Archive of halos' particles of the cross simulation, keys must
|
The columns must be `x`, `y`, `z` and `M`.
|
||||||
include `x`, `y`, `z` and `M`. The positions must already be
|
clump_map0 : 2-dimensional array
|
||||||
converted to cell numbers.
|
Clump map of the reference simulation.
|
||||||
|
clump_mapx : 2-dimensional array
|
||||||
|
Clump map of the cross simulation.
|
||||||
delta_bckg : 3-dimensional array
|
delta_bckg : 3-dimensional array
|
||||||
Summed background density field of the reference and cross
|
Summed background density field of the reference and cross
|
||||||
simulations calculated with particles assigned to halos at the
|
simulations calculated with particles assigned to halos at the
|
||||||
final snapshot. Assumed to only be sampled in cells
|
final snapshot. Assumed to only be sampled in cells
|
||||||
:math:`[512, 1536)^3`.
|
:math:`[512, 1536)^3`.
|
||||||
|
cache_size : int, optional
|
||||||
|
Caching size for loading the cross simulation halos.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
iterator verbosity flag. by default `true`.
|
iterator verbosity flag. by default `true`.
|
||||||
|
|
||||||
|
@ -149,12 +160,12 @@ class RealisationsMatcher:
|
||||||
# in the reference simulation from the cross simulation in the initial
|
# in the reference simulation from the cross simulation in the initial
|
||||||
# snapshot.
|
# snapshot.
|
||||||
if verbose:
|
if verbose:
|
||||||
now = datetime.now()
|
print(f"{datetime.now()}: querying the KNN.", flush=True)
|
||||||
print(f"{now}: querying the KNN.", flush=True)
|
|
||||||
match_indxs = radius_neighbours(
|
match_indxs = radius_neighbours(
|
||||||
catx.knn(select_initial=True), cat0.positions(in_initial=True),
|
catx.knn(in_initial=True), cat0.position(in_initial=True),
|
||||||
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
||||||
nmult=self.nmult, enforce_int32=True, verbose=verbose)
|
nmult=self.nmult, enforce_int32=True, verbose=verbose)
|
||||||
|
|
||||||
# We next remove neighbours whose mass is too large/small.
|
# We next remove neighbours whose mass is too large/small.
|
||||||
if self.dlogmass is not None:
|
if self.dlogmass is not None:
|
||||||
for i, indx in enumerate(match_indxs):
|
for i, indx in enumerate(match_indxs):
|
||||||
|
@ -163,12 +174,18 @@ class RealisationsMatcher:
|
||||||
aratio = numpy.abs(numpy.log10(catx[p][indx] / cat0[p][i]))
|
aratio = numpy.abs(numpy.log10(catx[p][indx] / cat0[p][i]))
|
||||||
match_indxs[i] = match_indxs[i][aratio < self.dlogmass]
|
match_indxs[i] = match_indxs[i][aratio < self.dlogmass]
|
||||||
|
|
||||||
# We will make a dictionary to keep in memory the halos' particles from
|
clid2map0 = {clid: i for i, clid in enumerate(clump_map0[:, 0])}
|
||||||
# the cross simulations so that they are not loaded in several times
|
clid2mapx = {clid: i for i, clid in enumerate(clump_mapx[:, 0])}
|
||||||
# and we only convert their positions to cells once. Possibly make an
|
|
||||||
# option to not do this to lower memory requirements?
|
# We will cache the halos from the cross simulation to speed up the I/O
|
||||||
cross_halos = {}
|
@lru_cache(maxsize=cache_size)
|
||||||
cross_lims = {}
|
def load_cached_halox(hid):
|
||||||
|
return load_processed_halo(hid, particlesx, clump_mapx, clid2mapx,
|
||||||
|
catx.clumps_cat, nshift=0,
|
||||||
|
ncells=BOX_SIZE)
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print(f"{datetime.now()}: calculating overlaps.", flush=True)
|
||||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||||
indxs = cat0["index"]
|
indxs = cat0["index"]
|
||||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
||||||
|
@ -178,36 +195,18 @@ class RealisationsMatcher:
|
||||||
continue
|
continue
|
||||||
# Next, we find this halo's particles, total mass, minimum and
|
# Next, we find this halo's particles, total mass, minimum and
|
||||||
# maximum cells and convert positions to cells.
|
# maximum cells and convert positions to cells.
|
||||||
halo0 = halos0_archive[str(k0)]
|
pos0, mass0, totmass0, mins0, maxs0 = load_processed_halo(
|
||||||
mass0 = numpy.sum(halo0["M"])
|
k0, particles0, clump_map0, clid2map0, cat0.clumps_cat,
|
||||||
mins0, maxs0 = get_halolims(halo0,
|
nshift=0, ncells=BOX_SIZE)
|
||||||
ncells=self.overlapper.inv_clength,
|
|
||||||
nshift=self.overlapper.nshift)
|
|
||||||
for p in ("x", "y", "z"):
|
|
||||||
halo0[p] = self.overlapper.pos2cell(halo0[p])
|
|
||||||
# We now loop over matches of this halo and calculate their
|
# We now loop over matches of this halo and calculate their
|
||||||
# overlap, storing them in `_cross`.
|
# overlap, storing them in `_cross`.
|
||||||
_cross = numpy.full(matches.size, numpy.nan, dtype=numpy.float32)
|
_cross = numpy.full(matches.size, numpy.nan, dtype=numpy.float32)
|
||||||
for j, kf in enumerate(catx["index"][matches]):
|
for j, kx in enumerate(catx["index"][matches]):
|
||||||
# Attempt to load this cross halo from memory, if it fails get
|
posx, massx, totmassx, minsx, maxsx = load_cached_halox(kx)
|
||||||
# it from from the halo archive (and similarly for the limits)
|
_cross[j] = self.overlapper(
|
||||||
# and convert the particle positions to cells.
|
pos0, posx, mass0, massx, delta_bckg, mins0, maxs0,
|
||||||
try:
|
minsx, maxsx, totmass1=totmass0, totmass2=totmassx)
|
||||||
halox = cross_halos[kf]
|
|
||||||
minsx, maxsx = cross_lims[kf]
|
|
||||||
except KeyError:
|
|
||||||
halox = halosx_archive[str(kf)]
|
|
||||||
minsx, maxsx = get_halolims(
|
|
||||||
halox, ncells=self.overlapper.inv_clength,
|
|
||||||
nshift=self.overlapper.nshift)
|
|
||||||
for p in ("x", "y", "z"):
|
|
||||||
halox[p] = self.overlapper.pos2cell(halox[p])
|
|
||||||
cross_halos[kf] = halox
|
|
||||||
cross_lims[kf] = (minsx, maxsx)
|
|
||||||
massx = numpy.sum(halox["M"])
|
|
||||||
_cross[j] = self.overlapper(halo0, halox, delta_bckg, mins0,
|
|
||||||
maxs0, minsx, maxsx, mass1=mass0,
|
|
||||||
mass2=massx)
|
|
||||||
cross[i] = _cross
|
cross[i] = _cross
|
||||||
|
|
||||||
# We remove all matches that have zero overlap to save space.
|
# We remove all matches that have zero overlap to save space.
|
||||||
|
@ -222,8 +221,9 @@ class RealisationsMatcher:
|
||||||
cross = numpy.asanyarray(cross, dtype=object)
|
cross = numpy.asanyarray(cross, dtype=object)
|
||||||
return match_indxs, cross
|
return match_indxs, cross
|
||||||
|
|
||||||
def smoothed_cross(self, cat0, catx, halos0_archive, halosx_archive,
|
def smoothed_cross(self, cat0, catx, particles0, particlesx, clump_map0,
|
||||||
delta_bckg, match_indxs, smooth_kwargs, verbose=True):
|
clump_mapx, delta_bckg, match_indxs, smooth_kwargs,
|
||||||
|
cache_size=10000, verbose=True):
|
||||||
r"""
|
r"""
|
||||||
Calculate the smoothed overlaps for pair previously identified via
|
Calculate the smoothed overlaps for pair previously identified via
|
||||||
`self.cross(...)` to have a non-zero overlap.
|
`self.cross(...)` to have a non-zero overlap.
|
||||||
|
@ -234,27 +234,27 @@ class RealisationsMatcher:
|
||||||
Halo catalogue of the reference simulation.
|
Halo catalogue of the reference simulation.
|
||||||
catx : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
catx : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||||
Halo catalogue of the cross simulation.
|
Halo catalogue of the cross simulation.
|
||||||
halos0_archive : `NpzFile` object
|
particles0 : 2-dimensional array
|
||||||
Archive of halos' particles of the reference simulation, keys must
|
Array of particles in box units in the reference simulation.
|
||||||
include `x`, `y`, `z` and `M`. The positions must already be
|
The columns must be `x`, `y`, `z` and `M`.
|
||||||
converted to cell numbers.
|
particlesx : 2-dimensional array
|
||||||
halosx_archive : `NpzFile` object
|
Array of particles in box units in the cross simulation.
|
||||||
Archive of halos' particles of the cross simulation, keys must
|
The columns must be `x`, `y`, `z` and `M`.
|
||||||
include `x`, `y`, `z` and `M`. The positions must already be
|
clump_map0 : 2-dimensional array
|
||||||
converted to cell numbers.
|
Clump map of the reference simulation.
|
||||||
|
clump_mapx : 2-dimensional array
|
||||||
|
Clump map of the cross simulation.
|
||||||
delta_bckg : 3-dimensional array
|
delta_bckg : 3-dimensional array
|
||||||
Smoothed summed background density field of the reference and cross
|
Smoothed summed background density field of the reference and cross
|
||||||
simulations calculated with particles assigned to halos at the
|
simulations calculated with particles assigned to halos at the
|
||||||
final snapshot. Assumed to only be sampled in cells
|
final snapshot. Assumed to only be sampled in cells
|
||||||
:math:`[512, 1536)^3`.
|
:math:`[512, 1536)^3`.
|
||||||
ref_indxs : 1-dimensional array
|
|
||||||
Halo IDs in the reference catalogue.
|
|
||||||
cross_indxs : 1-dimensional array
|
|
||||||
Halo IDs in the cross catalogue.
|
|
||||||
match_indxs : 1-dimensional array of arrays
|
match_indxs : 1-dimensional array of arrays
|
||||||
Indices of halo counterparts in the cross catalogue.
|
Indices of halo counterparts in the cross catalogue.
|
||||||
smooth_kwargs : kwargs
|
smooth_kwargs : kwargs
|
||||||
Kwargs to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
Kwargs to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
||||||
|
cache_size : int, optional
|
||||||
|
Caching size for loading the cross simulation halos.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
Iterator verbosity flag. By default `True`.
|
Iterator verbosity flag. By default `True`.
|
||||||
|
|
||||||
|
@ -262,37 +262,33 @@ class RealisationsMatcher:
|
||||||
-------
|
-------
|
||||||
overlaps : 1-dimensional array of arrays
|
overlaps : 1-dimensional array of arrays
|
||||||
"""
|
"""
|
||||||
|
nshift = read_nshift(smooth_kwargs)
|
||||||
|
clid2map0 = {clid: i for i, clid in enumerate(clump_map0[:, 0])}
|
||||||
|
clid2mapx = {clid: i for i, clid in enumerate(clump_mapx[:, 0])}
|
||||||
|
|
||||||
cross_halos = {}
|
@lru_cache(maxsize=cache_size)
|
||||||
cross_lims = {}
|
def load_cached_halox(hid):
|
||||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
return load_processed_halo(hid, particlesx, clump_mapx, clid2mapx,
|
||||||
|
catx.clumps_cat, nshift=nshift,
|
||||||
|
ncells=BOX_SIZE)
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print(f"{datetime.now()}: calculating smoothed overlaps.",
|
||||||
|
flush=True)
|
||||||
indxs = cat0["index"]
|
indxs = cat0["index"]
|
||||||
|
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
||||||
halo0 = halos0_archive[str(k0)]
|
pos0, mass0, __, mins0, maxs0 = load_processed_halo(
|
||||||
mins0, maxs0 = get_halolims(halo0,
|
k0, particles0, clump_map0, clid2map0, cat0.clumps_cat,
|
||||||
ncells=self.overlapper.inv_clength,
|
nshift=nshift, ncells=BOX_SIZE)
|
||||||
nshift=self.overlapper.nshift)
|
|
||||||
|
|
||||||
# Now loop over the matches and calculate the smoothed overlap.
|
# Now loop over the matches and calculate the smoothed overlap.
|
||||||
_cross = numpy.full(match_indxs[i].size, numpy.nan, numpy.float32)
|
_cross = numpy.full(match_indxs[i].size, numpy.nan, numpy.float32)
|
||||||
for j, kf in enumerate(catx["index"][match_indxs[i]]):
|
for j, kx in enumerate(catx["index"][match_indxs[i]]):
|
||||||
# Attempt to load this cross halo from memory, if it fails get
|
posx, massx, __, minsx, maxsx = load_cached_halox(kx)
|
||||||
# it from from the halo archive (and similarly for the limits).
|
_cross[j] = self.overlapper(pos0, posx, mass0, massx,
|
||||||
try:
|
delta_bckg, mins0, maxs0, minsx,
|
||||||
halox = cross_halos[kf]
|
maxsx, smooth_kwargs=smooth_kwargs)
|
||||||
minsx, maxsx = cross_lims[kf]
|
|
||||||
except KeyError:
|
|
||||||
halox = halosx_archive[str(kf)]
|
|
||||||
minsx, maxsx = get_halolims(
|
|
||||||
halox, ncells=self.overlapper.inv_clength,
|
|
||||||
nshift=self.overlapper.nshift)
|
|
||||||
cross_halos[kf] = halox
|
|
||||||
cross_lims[kf] = (minsx, maxsx)
|
|
||||||
|
|
||||||
_cross[j] = self.overlapper(halo0, halox, delta_bckg, mins0,
|
|
||||||
maxs0, minsx, maxsx,
|
|
||||||
smooth_kwargs=smooth_kwargs)
|
|
||||||
cross[i] = _cross
|
cross[i] = _cross
|
||||||
|
|
||||||
return numpy.asanyarray(cross, dtype=object)
|
return numpy.asanyarray(cross, dtype=object)
|
||||||
|
@ -341,57 +337,37 @@ class ParticleOverlap:
|
||||||
Gaussian smoothing.
|
Gaussian smoothing.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def make_bckg_delta(self, particles, clump_map, clid2map, halo_cat,
|
||||||
# Inverse cell length in box units. By default :math:`2^11`, which
|
delta=None, verbose=False):
|
||||||
# matches the initial RAMSES grid resolution.
|
|
||||||
self.inv_clength = 2**11
|
|
||||||
self.nshift = 5 # Hardcode this too to force consistency
|
|
||||||
self._clength = 1 / self.inv_clength
|
|
||||||
|
|
||||||
def pos2cell(self, pos):
|
|
||||||
"""
|
"""
|
||||||
Convert position to cell number. If `pos` is in
|
Calculate a NGP density field of particles belonging to halos of a
|
||||||
`numpy.typecodes["AllInteger"]` assumes it to already be the cell
|
halo catalogue `halo_cat`. Particles are only counted within the
|
||||||
number.
|
high-resolution region of the simulation. Smoothing must be applied
|
||||||
|
separately.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
pos : 1-dimensional array
|
particles : 2-dimensional array
|
||||||
Array of positions along an axis in the box.
|
Array of particles.
|
||||||
|
clump_map : 2-dimensional array
|
||||||
Returns
|
Array containing start and end indices in the particle array
|
||||||
-------
|
corresponding to each clump.
|
||||||
cells : 1-dimensional array
|
clid2map : dict
|
||||||
"""
|
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||||
# Check whether this is already the cell
|
halo_cat: :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
Halo catalogue.
|
||||||
return pos
|
|
||||||
return numpy.floor(pos * self.inv_clength).astype(numpy.int32)
|
|
||||||
|
|
||||||
def make_bckg_delta(self, halo_archive, delta=None, verbose=False):
|
|
||||||
"""
|
|
||||||
Calculate a NGP density field of particles belonging to halos within
|
|
||||||
the central :math:`1/2^3` high-resolution region of the simulation.
|
|
||||||
Smoothing must be applied separately.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
halo_archive : `NpzFile` object
|
|
||||||
Archive of halos' particles of the reference simulation, keys must
|
|
||||||
include `x`, `y`, `z` and `M`.
|
|
||||||
delta : 3-dimensional array, optional
|
delta : 3-dimensional array, optional
|
||||||
Array to store the density field in. If `None` a new array is
|
Array to store the density field in. If `None` a new array is
|
||||||
created.
|
created.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
Verbosity flag for loading the files.
|
Verbosity flag for loading the halos' particles.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
delta : 3-dimensional array
|
delta : 3-dimensional array
|
||||||
"""
|
"""
|
||||||
# We obtain the minimum/maximum cell IDs and number of cells
|
cellmin = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||||
cellmin = self.inv_clength // 4 # The minimum cell ID
|
cellmax = BOX_SIZE // 2 + BCKG_HALFSIZE
|
||||||
cellmax = 3 * self.inv_clength // 4 # The maximum cell ID
|
|
||||||
ncells = cellmax - cellmin
|
ncells = cellmax - cellmin
|
||||||
# We then pre-allocate the density field/check it is of the right shape
|
# We then pre-allocate the density field/check it is of the right shape
|
||||||
if delta is None:
|
if delta is None:
|
||||||
|
@ -399,28 +375,25 @@ class ParticleOverlap:
|
||||||
else:
|
else:
|
||||||
assert ((delta.shape == (ncells,) * 3)
|
assert ((delta.shape == (ncells,) * 3)
|
||||||
& (delta.dtype == numpy.float32))
|
& (delta.dtype == numpy.float32))
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
# We now loop one-by-one over the halos fill the density field.
|
clumps_cat = halo_cat.clumps_cat
|
||||||
files = halo_archive.files
|
for hid in tqdm(halo_cat["index"]) if verbose else halo_cat["index"]:
|
||||||
for file in tqdm(files) if verbose else files:
|
pos = load_parent_particles(hid, particles, clump_map, clid2map,
|
||||||
parts = halo_archive[file]
|
clumps_cat)
|
||||||
cells = [self.pos2cell(parts[p]) for p in ("x", "y", "z")]
|
if pos is None:
|
||||||
mass = parts["M"]
|
continue
|
||||||
|
|
||||||
|
pos, mass = pos[:, :3], pos[:, 3]
|
||||||
|
pos = pos2cell(pos, BOX_SIZE)
|
||||||
# We mask out particles outside the cubical high-resolution region
|
# We mask out particles outside the cubical high-resolution region
|
||||||
mask = ((cellmin <= cells[0])
|
mask = numpy.all((cellmin <= pos) & (pos < cellmax), axis=1)
|
||||||
& (cells[0] < cellmax)
|
pos = pos[mask]
|
||||||
& (cellmin <= cells[1])
|
fill_delta(delta, pos[:, 0], pos[:, 1], pos[:, 2],
|
||||||
& (cells[1] < cellmax)
|
*(cellmin,) * 3, mass[mask])
|
||||||
& (cellmin <= cells[2])
|
|
||||||
& (cells[2] < cellmax))
|
|
||||||
cells = [c[mask] for c in cells]
|
|
||||||
mass = mass[mask]
|
|
||||||
fill_delta(delta, *cells, *(cellmin,) * 3, mass)
|
|
||||||
|
|
||||||
return delta
|
return delta
|
||||||
|
|
||||||
def make_delta(self, clump, mins=None, maxs=None, subbox=False,
|
def make_delta(self, pos, mass, mins=None, maxs=None, subbox=False,
|
||||||
smooth_kwargs=None):
|
smooth_kwargs=None):
|
||||||
"""
|
"""
|
||||||
Calculate a NGP density field of a halo on a cubic grid. Optionally can
|
Calculate a NGP density field of a halo on a cubic grid. Optionally can
|
||||||
|
@ -428,8 +401,10 @@ class ParticleOverlap:
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
clump : structurered arrays
|
pos : 2-dimensional array
|
||||||
Clump structured array, keys must include `x`, `y`, `z` and `M`.
|
Halo particle position array.
|
||||||
|
mass : 1-dimensional array
|
||||||
|
Halo particle mass array.
|
||||||
mins, maxs : 1-dimensional arrays of shape `(3,)`
|
mins, maxs : 1-dimensional arrays of shape `(3,)`
|
||||||
Minimun and maximum cell numbers along each dimension.
|
Minimun and maximum cell numbers along each dimension.
|
||||||
subbox : bool, optional
|
subbox : bool, optional
|
||||||
|
@ -443,50 +418,45 @@ class ParticleOverlap:
|
||||||
-------
|
-------
|
||||||
delta : 3-dimensional array
|
delta : 3-dimensional array
|
||||||
"""
|
"""
|
||||||
cells = [self.pos2cell(clump[p]) for p in ("x", "y", "z")]
|
nshift = read_nshift(smooth_kwargs)
|
||||||
|
cells = self.pos2cell(pos)
|
||||||
# Check that minima and maxima are integers
|
# Check that minima and maxima are integers
|
||||||
if not (mins is None and maxs is None):
|
if not (mins is None and maxs is None):
|
||||||
assert mins.dtype.char in numpy.typecodes["AllInteger"]
|
assert mins.dtype.char in numpy.typecodes["AllInteger"]
|
||||||
assert maxs.dtype.char in numpy.typecodes["AllInteger"]
|
assert maxs.dtype.char in numpy.typecodes["AllInteger"]
|
||||||
|
|
||||||
if subbox:
|
if subbox:
|
||||||
# Minimum xcell, ycell and zcell of this clump
|
|
||||||
if mins is None or maxs is None:
|
if mins is None or maxs is None:
|
||||||
mins = numpy.asanyarray(
|
mins, maxs = get_halolims(cells, BOX_SIZE, nshift)
|
||||||
[max(numpy.min(cell) - self.nshift, 0) for cell in cells]
|
|
||||||
)
|
|
||||||
maxs = numpy.asanyarray(
|
|
||||||
[
|
|
||||||
min(numpy.max(cell) + self.nshift, self.inv_clength)
|
|
||||||
for cell in cells
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
ncells = numpy.max(maxs - mins) + 1 # To get the number of cells
|
ncells = maxs - mins + 1 # To get the number of cells
|
||||||
else:
|
else:
|
||||||
mins = [0, 0, 0]
|
mins = [0, 0, 0]
|
||||||
ncells = self.inv_clength
|
ncells = BOX_SIZE
|
||||||
|
|
||||||
# Preallocate and fill the array
|
# Preallocate and fill the array
|
||||||
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||||
fill_delta(delta, *cells, *mins, clump["M"])
|
fill_delta(delta, cells[:, 0], cells[:, 1], cells[:, 2], *mins, mass)
|
||||||
|
|
||||||
if smooth_kwargs is not None:
|
if smooth_kwargs is not None:
|
||||||
gaussian_filter(delta, output=delta, **smooth_kwargs)
|
gaussian_filter(delta, output=delta, **smooth_kwargs)
|
||||||
return delta
|
return delta
|
||||||
|
|
||||||
def make_deltas(self, clump1, clump2, mins1=None, maxs1=None, mins2=None,
|
def make_deltas(self, pos1, pos2, mass1, mass2, mins1=None, maxs1=None,
|
||||||
maxs2=None, smooth_kwargs=None):
|
mins2=None, maxs2=None, smooth_kwargs=None):
|
||||||
"""
|
"""
|
||||||
Calculate a NGP density fields of two halos on a grid that encloses
|
Calculate a NGP density fields of two halos on a grid that encloses
|
||||||
them both. Optionally can be smoothed with a Gaussian kernel.
|
them both. Optionally can be smoothed with a Gaussian kernel.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
clump1, clump2 : structurered arrays
|
pos1 : 2-dimensional array
|
||||||
Particle structured array of the two clumps. Keys must include `x`,
|
Particle positions of the first halo.
|
||||||
`y`, `z` and `M`.
|
pos2 : 2-dimensional array
|
||||||
|
Particle positions of the second halo.
|
||||||
|
mass1 : 1-dimensional array
|
||||||
|
Particle masses of the first halo.
|
||||||
|
mass2 : 1-dimensional array
|
||||||
|
Particle masses of the second halo.
|
||||||
mins1, maxs1 : 1-dimensional arrays of shape `(3,)`
|
mins1, maxs1 : 1-dimensional arrays of shape `(3,)`
|
||||||
Minimun and maximum cell numbers along each dimension of `clump1`.
|
Minimun and maximum cell numbers along each dimension of `clump1`.
|
||||||
Optional.
|
Optional.
|
||||||
|
@ -507,51 +477,51 @@ class ParticleOverlap:
|
||||||
Indices where the lower mass clump has a non-zero density.
|
Indices where the lower mass clump has a non-zero density.
|
||||||
Calculated only if no smoothing is applied, otherwise `None`.
|
Calculated only if no smoothing is applied, otherwise `None`.
|
||||||
"""
|
"""
|
||||||
xc1, yc1, zc1 = (self.pos2cell(clump1[p]) for p in ("x", "y", "z"))
|
nshift = read_nshift(smooth_kwargs)
|
||||||
xc2, yc2, zc2 = (self.pos2cell(clump2[p]) for p in ("x", "y", "z"))
|
pos1 = pos2cell(pos1, BOX_SIZE)
|
||||||
|
pos2 = pos2cell(pos2, BOX_SIZE)
|
||||||
|
xc1, yc1, zc1 = [pos1[:, i] for i in range(3)]
|
||||||
|
xc2, yc2, zc2 = [pos2[:, i] for i in range(3)]
|
||||||
|
|
||||||
if any(obj is None for obj in (mins1, maxs1, mins2, maxs2)):
|
if any(obj is None for obj in (mins1, maxs1, mins2, maxs2)):
|
||||||
# Minimum cell number of the two halos along each dimension
|
# Minimum cell number of the two halos along each dimension
|
||||||
xmin = min(numpy.min(xc1), numpy.min(xc2)) - self.nshift
|
xmin = min(numpy.min(xc1), numpy.min(xc2)) - nshift
|
||||||
ymin = min(numpy.min(yc1), numpy.min(yc2)) - self.nshift
|
ymin = min(numpy.min(yc1), numpy.min(yc2)) - nshift
|
||||||
zmin = min(numpy.min(zc1), numpy.min(zc2)) - self.nshift
|
zmin = min(numpy.min(zc1), numpy.min(zc2)) - nshift
|
||||||
# Make sure shifting does not go beyond boundaries
|
# Make sure shifting does not go beyond boundaries
|
||||||
xmin, ymin, zmin = [max(px, 0) for px in (xmin, ymin, zmin)]
|
xmin, ymin, zmin = [max(px, 0) for px in (xmin, ymin, zmin)]
|
||||||
|
|
||||||
# Maximum cell number of the two halos along each dimension
|
# Maximum cell number of the two halos along each dimension
|
||||||
xmax = max(numpy.max(xc1), numpy.max(xc2)) + self.nshift
|
xmax = max(numpy.max(xc1), numpy.max(xc2)) + nshift
|
||||||
ymax = max(numpy.max(yc1), numpy.max(yc2)) + self.nshift
|
ymax = max(numpy.max(yc1), numpy.max(yc2)) + nshift
|
||||||
zmax = max(numpy.max(zc1), numpy.max(zc2)) + self.nshift
|
zmax = max(numpy.max(zc1), numpy.max(zc2)) + nshift
|
||||||
# Make sure shifting does not go beyond boundaries
|
# Make sure shifting does not go beyond boundaries
|
||||||
xmax, ymax, zmax = [
|
xmax, ymax, zmax = [min(px, BOX_SIZE - 1)
|
||||||
min(px, self.inv_clength - 1) for px in (xmax, ymax, zmax)
|
for px in (xmax, ymax, zmax)]
|
||||||
]
|
|
||||||
else:
|
else:
|
||||||
xmin, ymin, zmin = [min(mins1[i], mins2[i]) for i in range(3)]
|
xmin, ymin, zmin = [min(mins1[i], mins2[i]) for i in range(3)]
|
||||||
xmax, ymax, zmax = [max(maxs1[i], maxs2[i]) for i in range(3)]
|
xmax, ymax, zmax = [max(maxs1[i], maxs2[i]) for i in range(3)]
|
||||||
|
|
||||||
cellmins = (xmin, ymin, zmin) # Cell minima
|
cellmins = (xmin, ymin, zmin) # Cell minima
|
||||||
ncells = max(xmax - xmin, ymax - ymin, zmax - zmin) + 1 # Num cells
|
ncells = xmax - xmin + 1, ymax - ymin + 1, zmax - zmin + 1 # Num cells
|
||||||
|
|
||||||
# Preallocate and fill the arrays
|
# Preallocate and fill the arrays
|
||||||
delta1 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
delta1 = numpy.zeros(ncells, dtype=numpy.float32)
|
||||||
delta2 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
delta2 = numpy.zeros(ncells, dtype=numpy.float32)
|
||||||
|
|
||||||
# If no smoothing figure out the nonzero indices of the smaller clump
|
# If no smoothing figure out the nonzero indices of the smaller clump
|
||||||
if smooth_kwargs is None:
|
if smooth_kwargs is None:
|
||||||
if clump1.size > clump2.size:
|
if pos1.shape[0] > pos2.shape[0]:
|
||||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
fill_delta(delta1, xc1, yc1, zc1, *cellmins, mass1)
|
||||||
nonzero = fill_delta_indxs(
|
nonzero = fill_delta_indxs(delta2, xc2, yc2, zc2, *cellmins,
|
||||||
delta2, xc2, yc2, zc2, *cellmins, clump2["M"]
|
mass2)
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
nonzero = fill_delta_indxs(
|
nonzero = fill_delta_indxs(delta1, xc1, yc1, zc1, *cellmins,
|
||||||
delta1, xc1, yc1, zc1, *cellmins, clump1["M"]
|
mass1)
|
||||||
)
|
fill_delta(delta2, xc2, yc2, zc2, *cellmins, mass2)
|
||||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
|
||||||
else:
|
else:
|
||||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
fill_delta(delta1, xc1, yc1, zc1, *cellmins, mass1)
|
||||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
fill_delta(delta2, xc2, yc2, zc2, *cellmins, mass2)
|
||||||
nonzero = None
|
nonzero = None
|
||||||
|
|
||||||
if smooth_kwargs is not None:
|
if smooth_kwargs is not None:
|
||||||
|
@ -559,9 +529,9 @@ class ParticleOverlap:
|
||||||
gaussian_filter(delta2, output=delta2, **smooth_kwargs)
|
gaussian_filter(delta2, output=delta2, **smooth_kwargs)
|
||||||
return delta1, delta2, cellmins, nonzero
|
return delta1, delta2, cellmins, nonzero
|
||||||
|
|
||||||
def __call__(self, clump1, clump2, delta_bckg, mins1=None, maxs1=None,
|
def __call__(self, pos1, pos2, mass1, mass2, delta_bckg,
|
||||||
mins2=None, maxs2=None, mass1=None, mass2=None,
|
mins1=None, maxs1=None, mins2=None, maxs2=None,
|
||||||
smooth_kwargs=None):
|
totmass1=None, totmass2=None, smooth_kwargs=None):
|
||||||
"""
|
"""
|
||||||
Calculate overlap between `clump1` and `clump2`. See
|
Calculate overlap between `clump1` and `clump2`. See
|
||||||
`calculate_overlap(...)` for further information. Be careful so that
|
`calculate_overlap(...)` for further information. Be careful so that
|
||||||
|
@ -572,9 +542,14 @@ class ParticleOverlap:
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
clump1, clump2 : structurered arrays
|
pos1 : 2-dimensional array
|
||||||
Structured arrays containing the particles of a given clump. Keys
|
Particle positions of the first halo.
|
||||||
must include `x`, `y`, `z` and `M`.
|
pos2 : 2-dimensional array
|
||||||
|
Particle positions of the second halo.
|
||||||
|
mass1 : 1-dimensional array
|
||||||
|
Particle masses of the first halo.
|
||||||
|
mass2 : 1-dimensional array
|
||||||
|
Particle masses of the second halo.
|
||||||
cellmins : len-3 tuple
|
cellmins : len-3 tuple
|
||||||
Tuple of left-most cell ID in the full box.
|
Tuple of left-most cell ID in the full box.
|
||||||
delta_bckg : 3-dimensional array
|
delta_bckg : 3-dimensional array
|
||||||
|
@ -588,7 +563,7 @@ class ParticleOverlap:
|
||||||
mins2, maxs2 : 1-dimensional arrays of shape `(3,)`
|
mins2, maxs2 : 1-dimensional arrays of shape `(3,)`
|
||||||
Minimum and maximum cell numbers along each dimension of `clump2`,
|
Minimum and maximum cell numbers along each dimension of `clump2`,
|
||||||
optional.
|
optional.
|
||||||
mass1, mass2 : floats, optional
|
totmass1, totmass2 : floats, optional
|
||||||
Total mass of `clump1` and `clump2`, respectively. Must be provided
|
Total mass of `clump1` and `clump2`, respectively. Must be provided
|
||||||
if `loop_nonzero` is `True`.
|
if `loop_nonzero` is `True`.
|
||||||
smooth_kwargs : kwargs, optional
|
smooth_kwargs : kwargs, optional
|
||||||
|
@ -600,16 +575,16 @@ class ParticleOverlap:
|
||||||
overlap : float
|
overlap : float
|
||||||
"""
|
"""
|
||||||
delta1, delta2, cellmins, nonzero = self.make_deltas(
|
delta1, delta2, cellmins, nonzero = self.make_deltas(
|
||||||
clump1, clump2, mins1, maxs1, mins2, maxs2,
|
pos1, pos2, mass1, mass2, mins1, maxs1, mins2, maxs2,
|
||||||
smooth_kwargs=smooth_kwargs)
|
smooth_kwargs=smooth_kwargs)
|
||||||
|
|
||||||
if smooth_kwargs is not None:
|
if smooth_kwargs is not None:
|
||||||
return calculate_overlap(delta1, delta2, cellmins, delta_bckg)
|
return calculate_overlap(delta1, delta2, cellmins, delta_bckg)
|
||||||
# Calculate masses not given
|
# Calculate masses not given
|
||||||
mass1 = numpy.sum(clump1["M"]) if mass1 is None else mass1
|
totmass1 = numpy.sum(mass1) if totmass1 is None else totmass1
|
||||||
mass2 = numpy.sum(clump2["M"]) if mass2 is None else mass2
|
totmass2 = numpy.sum(mass2) if totmass2 is None else totmass2
|
||||||
return calculate_overlap_indxs(
|
return calculate_overlap_indxs(
|
||||||
delta1, delta2, cellmins, delta_bckg, nonzero, mass1, mass2)
|
delta1, delta2, cellmins, delta_bckg, nonzero, totmass1, totmass2)
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -617,6 +592,49 @@ class ParticleOverlap:
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def pos2cell(pos, ncells):
|
||||||
|
"""
|
||||||
|
Convert position to cell number. If `pos` is in
|
||||||
|
`numpy.typecodes["AllInteger"]` assumes it to already be the cell
|
||||||
|
number.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
pos : 1-dimensional array
|
||||||
|
Array of positions along an axis in the box.
|
||||||
|
ncells : int
|
||||||
|
Number of cells along the axis.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
cells : 1-dimensional array
|
||||||
|
"""
|
||||||
|
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
||||||
|
return pos
|
||||||
|
return numpy.floor(pos * ncells).astype(numpy.int32)
|
||||||
|
|
||||||
|
|
||||||
|
def read_nshift(smooth_kwargs):
|
||||||
|
"""
|
||||||
|
Read off the number of cells to pad the density field if smoothing is
|
||||||
|
applied. Defaults to the ceiling of twice of the smoothing scale.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
smooth_kwargs : kwargs, optional
|
||||||
|
Kwargs to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
||||||
|
If `None` no smoothing is applied.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
nshift : int
|
||||||
|
"""
|
||||||
|
if smooth_kwargs is None:
|
||||||
|
return 0
|
||||||
|
else:
|
||||||
|
return ceil(2 * smooth_kwargs["sigma"])
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
@jit(nopython=True)
|
||||||
def fill_delta(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
def fill_delta(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
||||||
"""
|
"""
|
||||||
|
@ -679,15 +697,14 @@ def fill_delta_indxs(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
||||||
return cells[:count_nonzero, :] # Cutoff unassigned places
|
return cells[:count_nonzero, :] # Cutoff unassigned places
|
||||||
|
|
||||||
|
|
||||||
def get_halolims(halo, ncells, nshift=None):
|
def get_halolims(pos, ncells, nshift=None):
|
||||||
"""
|
"""
|
||||||
Get the lower and upper limit of a halo's positions or cell numbers.
|
Get the lower and upper limit of a halo's positions or cell numbers.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
halo : structured array
|
pos : 2-dimensional array
|
||||||
Structured array containing the particles of a given halo. Keys must
|
Halo particle array. Columns must be `x`, `y`, `z`.
|
||||||
`x`, `y`, `z`.
|
|
||||||
ncells : int
|
ncells : int
|
||||||
Number of grid cells of the box along a single dimension.
|
Number of grid cells of the box along a single dimension.
|
||||||
nshift : int, optional
|
nshift : int, optional
|
||||||
|
@ -699,17 +716,16 @@ def get_halolims(halo, ncells, nshift=None):
|
||||||
Minimum and maximum along each axis.
|
Minimum and maximum along each axis.
|
||||||
"""
|
"""
|
||||||
# Check that in case of `nshift` we have integer positions.
|
# Check that in case of `nshift` we have integer positions.
|
||||||
dtype = halo["x"].dtype
|
dtype = pos.dtype
|
||||||
if nshift is not None and dtype.char not in numpy.typecodes["AllInteger"]:
|
if nshift is not None and dtype.char not in numpy.typecodes["AllInteger"]:
|
||||||
raise TypeError("`nshift` supported only positions are cells.")
|
raise TypeError("`nshift` supported only positions are cells.")
|
||||||
nshift = 0 if nshift is None else nshift # To simplify code below
|
nshift = 0 if nshift is None else nshift # To simplify code below
|
||||||
|
|
||||||
mins = numpy.full(3, numpy.nan, dtype=dtype)
|
mins = numpy.full(3, numpy.nan, dtype=dtype)
|
||||||
maxs = numpy.full(3, numpy.nan, dtype=dtype)
|
maxs = numpy.full(3, numpy.nan, dtype=dtype)
|
||||||
|
for i in range(3):
|
||||||
for i, p in enumerate(["x", "y", "z"]):
|
mins[i] = max(numpy.min(pos[:, i]) - nshift, 0)
|
||||||
mins[i] = max(numpy.min(halo[p]) - nshift, 0)
|
maxs[i] = min(numpy.max(pos[:, i]) + nshift, ncells - 1)
|
||||||
maxs[i] = min(numpy.max(halo[p]) + nshift, ncells - 1)
|
|
||||||
|
|
||||||
return mins, maxs
|
return mins, maxs
|
||||||
|
|
||||||
|
@ -741,8 +757,8 @@ def calculate_overlap(delta1, delta2, cellmins, delta_bckg):
|
||||||
totmass = 0.0 # Total mass of clump 1 and clump 2
|
totmass = 0.0 # Total mass of clump 1 and clump 2
|
||||||
intersect = 0.0 # Weighted intersecting mass
|
intersect = 0.0 # Weighted intersecting mass
|
||||||
i0, j0, k0 = cellmins # Unpack things
|
i0, j0, k0 = cellmins # Unpack things
|
||||||
bckg_offset = 512 # Offset of the background density field
|
bckg_size = 2 * BCKG_HALFSIZE
|
||||||
bckg_size = 1024
|
bckg_offset = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||||
imax, jmax, kmax = delta1.shape
|
imax, jmax, kmax = delta1.shape
|
||||||
|
|
||||||
for i in range(imax):
|
for i in range(imax):
|
||||||
|
@ -798,8 +814,8 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
||||||
"""
|
"""
|
||||||
intersect = 0.0 # Weighted intersecting mass
|
intersect = 0.0 # Weighted intersecting mass
|
||||||
i0, j0, k0 = cellmins # Unpack cell minimas
|
i0, j0, k0 = cellmins # Unpack cell minimas
|
||||||
bckg_offset = 512 # Offset of the background density field
|
bckg_size = 2 * BCKG_HALFSIZE
|
||||||
bckg_size = 1024 # Size of the background density field array
|
bckg_offset = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||||
|
|
||||||
for n in range(nonzero.shape[0]):
|
for n in range(nonzero.shape[0]):
|
||||||
i, j, k = nonzero[n, :]
|
i, j, k = nonzero[n, :]
|
||||||
|
@ -821,47 +837,51 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
||||||
return intersect / (mass1 + mass2 - intersect)
|
return intersect / (mass1 + mass2 - intersect)
|
||||||
|
|
||||||
|
|
||||||
def dist_centmass(clump):
|
def load_processed_halo(hid, particles, clump_map, clid2map, clumps_cat,
|
||||||
|
ncells, nshift):
|
||||||
"""
|
"""
|
||||||
Calculate the clump (or halo) particles' distance from the centre of mass.
|
Load a processed halo from the `.h5` file. This is to be wrapped by a
|
||||||
|
cacher.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
clump : 2-dimensional array of shape (n_particles, 7)
|
hid : int
|
||||||
Particle array. The first four columns must be `x`, `y`, `z` and `M`.
|
Halo ID.
|
||||||
|
particles : 2-dimensional array
|
||||||
|
Array of particles in box units. The columns must be `x`, `y`, `z`
|
||||||
|
and `M`.
|
||||||
|
clump_map : 2-dimensional array
|
||||||
|
Array containing start and end indices in the particle array
|
||||||
|
corresponding to each clump.
|
||||||
|
clid2map : dict
|
||||||
|
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||||
|
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||||
|
Clumps catalogue.
|
||||||
|
ncells : int
|
||||||
|
Number of cells in the original density field. Typically 2048.
|
||||||
|
nshift : int
|
||||||
|
Number of cells to pad the density field.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
dist : 1-dimensional array of shape `(n_particles, )`
|
pos : 2-dimensional array
|
||||||
Particle distance from the centre of mass.
|
Array of cell particle positions.
|
||||||
cm : 1-dimensional array of shape `(3,)`
|
mass : 1-dimensional array
|
||||||
Center of mass coordinates.
|
Array of particle masses.
|
||||||
|
totmass : float
|
||||||
|
Total mass of the halo.
|
||||||
|
mins : len-3 tuple
|
||||||
|
Minimum cell indices of the halo.
|
||||||
|
maxs : len-3 tuple
|
||||||
|
Maximum cell indices of the halo.
|
||||||
"""
|
"""
|
||||||
# CM along each dimension
|
pos = load_parent_particles(hid, particles, clump_map, clid2map,
|
||||||
cm = numpy.average(clump[:, :3], weights=clump[:, 3], axis=0)
|
clumps_cat)
|
||||||
return numpy.linalg.norm(clump[:, :3] - cm, axis=1), cm
|
pos, mass = pos[:, :3], pos[:, 3]
|
||||||
|
pos = pos2cell(pos, ncells)
|
||||||
|
totmass = numpy.sum(mass)
|
||||||
def dist_percentile(dist, qs, distmax=0.075):
|
mins, maxs = get_halolims(pos, ncells=ncells, nshift=nshift)
|
||||||
"""
|
return pos, mass, totmass, mins, maxs
|
||||||
Calculate q-th percentiles of `dist`, with an upper limit of `distmax`.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
dist : 1-dimensional array
|
|
||||||
Array of distances.
|
|
||||||
qs : 1-dimensional array
|
|
||||||
Percentiles to compute.
|
|
||||||
distmax : float, optional
|
|
||||||
The maximum distance. By default 0.075.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
x : 1-dimensional array
|
|
||||||
"""
|
|
||||||
x = numpy.percentile(dist, qs)
|
|
||||||
x[x > distmax] = distmax # Enforce the upper limit
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.0,
|
def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.0,
|
||||||
|
|
|
@ -15,16 +15,14 @@
|
||||||
from .box_units import BoxUnits # noqa
|
from .box_units import BoxUnits # noqa
|
||||||
from .halo_cat import ClumpsCatalogue, HaloCatalogue # noqa
|
from .halo_cat import ClumpsCatalogue, HaloCatalogue # noqa
|
||||||
from .knn_summary import kNNCDFReader # noqa
|
from .knn_summary import kNNCDFReader # noqa
|
||||||
from .obs import ( # noqa
|
from .obs import (SDSS, MCXCClusters, PlanckClusters, TwoMPPGalaxies, # noqa
|
||||||
SDSS,
|
TwoMPPGroups)
|
||||||
MCXCClusters,
|
from .overlap_summary import (NPairsOverlap, PairOverlap, # noqa
|
||||||
PlanckClusters,
|
binned_resample_mean)
|
||||||
TwoMPPGalaxies,
|
|
||||||
TwoMPPGroups,
|
|
||||||
)
|
|
||||||
from .overlap_summary import NPairsOverlap, PairOverlap, binned_resample_mean # noqa
|
|
||||||
from .paths import CSiBORGPaths # noqa
|
from .paths import CSiBORGPaths # noqa
|
||||||
from .pk_summary import PKReader # noqa
|
from .pk_summary import PKReader # noqa
|
||||||
from .readsim import MmainReader, ParticleReader, halfwidth_select, read_initcm # noqa
|
from .readsim import (MmainReader, ParticleReader, halfwidth_select, # noqa
|
||||||
|
load_clump_particles, load_parent_particles, read_initcm)
|
||||||
from .tpcf_summary import TPCFReader # noqa
|
from .tpcf_summary import TPCFReader # noqa
|
||||||
from .utils import cartesian_to_radec, cols_to_structured, radec_to_cartesian # noqa
|
from .utils import (cartesian_to_radec, cols_to_structured, # noqa
|
||||||
|
radec_to_cartesian, read_h5)
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
# You should have received a copy of the GNU General Public License along
|
# You should have received a copy of the GNU General Public License along
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
"""CSiBORG halo catalogue."""
|
"""CSiBORG halo and clumps catalogues."""
|
||||||
from abc import ABC
|
from abc import ABC
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
@ -177,7 +177,7 @@ class BaseCatalogue(ABC):
|
||||||
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
|
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
|
||||||
"""
|
"""
|
||||||
knn = NearestNeighbors()
|
knn = NearestNeighbors()
|
||||||
return knn.fit(self.positions(in_initial))
|
return knn.fit(self.position(in_initial))
|
||||||
|
|
||||||
def radius_neigbours(self, X, radius, in_initial):
|
def radius_neigbours(self, X, radius, in_initial):
|
||||||
r"""
|
r"""
|
||||||
|
@ -368,6 +368,8 @@ class HaloCatalogue(BaseCatalogue):
|
||||||
minmass : len-2 tuple
|
minmass : len-2 tuple
|
||||||
Minimum mass. The first element is the catalogue key and the second is
|
Minimum mass. The first element is the catalogue key and the second is
|
||||||
the value.
|
the value.
|
||||||
|
with_lagpatch : bool, optional
|
||||||
|
Whether to only load halos with a resolved Lagrangian patch.
|
||||||
load_fitted : bool, optional
|
load_fitted : bool, optional
|
||||||
Whether to load fitted quantities.
|
Whether to load fitted quantities.
|
||||||
load_initial : bool, optional
|
load_initial : bool, optional
|
||||||
|
@ -378,22 +380,39 @@ class HaloCatalogue(BaseCatalogue):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12),
|
def __init__(self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12),
|
||||||
load_fitted=True, load_initial=False, rawdata=False):
|
with_lagpatch=True, load_fitted=True, load_initial=True,
|
||||||
|
rawdata=False):
|
||||||
self.nsim = nsim
|
self.nsim = nsim
|
||||||
self.paths = paths
|
self.paths = paths
|
||||||
# Read in the mmain catalogue of summed substructure
|
# Read in the mmain catalogue of summed substructure
|
||||||
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
||||||
self._data = mmain["mmain"]
|
self._data = mmain["mmain"]
|
||||||
|
# We will also need the clumps catalogue
|
||||||
|
self._clumps_cat = ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||||
|
load_fitted=False)
|
||||||
if load_fitted:
|
if load_fitted:
|
||||||
fits = numpy.load(paths.structfit_path(self.nsnap, nsim, "halos"))
|
fits = numpy.load(paths.structfit_path(self.nsnap, nsim, "halos"))
|
||||||
cols = [col for col in fits.dtype.names if col != "index"]
|
cols = [col for col in fits.dtype.names if col != "index"]
|
||||||
X = [fits[col] for col in cols]
|
X = [fits[col] for col in cols]
|
||||||
self._data = add_columns(self._data, X, cols)
|
self._data = add_columns(self._data, X, cols)
|
||||||
|
|
||||||
# TODO: load initial positions
|
if load_initial:
|
||||||
|
fits = numpy.load(paths.initmatch_path(nsim, "fit"))
|
||||||
|
X, cols = [], []
|
||||||
|
for col in fits.dtype.names:
|
||||||
|
if col == "index":
|
||||||
|
continue
|
||||||
|
if col in ['x', 'y', 'z']:
|
||||||
|
cols.append(col + "0")
|
||||||
|
else:
|
||||||
|
cols.append(col)
|
||||||
|
X.append(fits[col])
|
||||||
|
|
||||||
|
self._data = add_columns(self._data, X, cols)
|
||||||
|
|
||||||
if not rawdata:
|
if not rawdata:
|
||||||
|
if with_lagpatch:
|
||||||
|
self._data = self._data[numpy.isfinite(self['lagpatch'])]
|
||||||
# Flip positions and convert from code units to cMpc. Convert M too
|
# Flip positions and convert from code units to cMpc. Convert M too
|
||||||
flip_cols(self._data, "x", "z")
|
flip_cols(self._data, "x", "z")
|
||||||
for p in ("x", "y", "z"):
|
for p in ("x", "y", "z"):
|
||||||
|
@ -402,9 +421,24 @@ class HaloCatalogue(BaseCatalogue):
|
||||||
"r500c", "m200c", "m500c", "r200m", "m200m"]
|
"r500c", "m200c", "m500c", "r200m", "m200m"]
|
||||||
self._data = self.box.convert_from_boxunits(self._data, names)
|
self._data = self.box.convert_from_boxunits(self._data, names)
|
||||||
|
|
||||||
|
if load_initial:
|
||||||
|
names = ["x0", "y0", "z0", "lagpatch"]
|
||||||
|
self._data = self.box.convert_from_boxunits(self._data, names)
|
||||||
|
|
||||||
if maxdist is not None:
|
if maxdist is not None:
|
||||||
dist = numpy.sqrt(self._data["x"]**2 + self._data["y"]**2
|
dist = numpy.sqrt(self._data["x"]**2 + self._data["y"]**2
|
||||||
+ self._data["z"]**2)
|
+ self._data["z"]**2)
|
||||||
self._data = self._data[dist < maxdist]
|
self._data = self._data[dist < maxdist]
|
||||||
if minmass is not None:
|
if minmass is not None:
|
||||||
self._data = self._data[self._data[minmass[0]] > minmass[1]]
|
self._data = self._data[self._data[minmass[0]] > minmass[1]]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def clumps_cat(self):
|
||||||
|
"""
|
||||||
|
The raw clumps catalogue.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||||
|
"""
|
||||||
|
return self._clumps_cat
|
||||||
|
|
|
@ -260,7 +260,7 @@ class CSiBORGPaths:
|
||||||
fname = f"{kind}_out_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npy"
|
fname = f"{kind}_out_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npy"
|
||||||
return join(fdir, fname)
|
return join(fdir, fname)
|
||||||
|
|
||||||
def overlap_path(self, nsim0, nsimx):
|
def overlap_path(self, nsim0, nsimx, smoothed):
|
||||||
"""
|
"""
|
||||||
Path to the overlap files between two simulations.
|
Path to the overlap files between two simulations.
|
||||||
|
|
||||||
|
@ -270,6 +270,8 @@ class CSiBORGPaths:
|
||||||
IC realisation index of the first simulation.
|
IC realisation index of the first simulation.
|
||||||
nsimx : int
|
nsimx : int
|
||||||
IC realisation index of the second simulation.
|
IC realisation index of the second simulation.
|
||||||
|
smoothed : bool
|
||||||
|
Whether the overlap is smoothed or not.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -280,6 +282,8 @@ class CSiBORGPaths:
|
||||||
mkdir(fdir)
|
mkdir(fdir)
|
||||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||||
fname = f"overlap_{str(nsim0).zfill(5)}_{str(nsimx).zfill(5)}.npz"
|
fname = f"overlap_{str(nsim0).zfill(5)}_{str(nsimx).zfill(5)}.npz"
|
||||||
|
if smoothed:
|
||||||
|
fname = fname.replace("overlap", "overlap_smoothed")
|
||||||
return join(fdir, fname)
|
return join(fdir, fname)
|
||||||
|
|
||||||
def radpos_path(self, nsnap, nsim):
|
def radpos_path(self, nsnap, nsim):
|
||||||
|
@ -305,37 +309,24 @@ class CSiBORGPaths:
|
||||||
fname = f"radpos_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npz"
|
fname = f"radpos_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npz"
|
||||||
return join(fdir, fname)
|
return join(fdir, fname)
|
||||||
|
|
||||||
def particle_h5py_path(self, nsim, kind=None, dtype="float32"):
|
def particles_path(self, nsim):
|
||||||
"""
|
"""
|
||||||
Path to the file containing all particles in a `.h5` file.
|
Path to the files containing all particles.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
nsim : int
|
nsim : int
|
||||||
IC realisation index.
|
IC realisation index.
|
||||||
kind : str
|
|
||||||
Type of output. Must be one of `[None, 'pos', 'clumpmap']`.
|
|
||||||
dtype : str
|
|
||||||
Data type. Must be one of `['float32', 'float64']`.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
path : str
|
path : str
|
||||||
"""
|
"""
|
||||||
assert kind in [None, "pos", "clumpmap"]
|
|
||||||
assert dtype in ["float32", "float64"]
|
|
||||||
fdir = join(self.postdir, "particles")
|
fdir = join(self.postdir, "particles")
|
||||||
if not isdir(fdir):
|
if not isdir(fdir):
|
||||||
makedirs(fdir)
|
makedirs(fdir)
|
||||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||||
if kind is None:
|
|
||||||
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
||||||
else:
|
|
||||||
fname = f"parts_{kind}_{str(nsim).zfill(5)}.h5"
|
|
||||||
|
|
||||||
if dtype == "float64":
|
|
||||||
fname = fname.replace(".h5", "_f64.h5")
|
|
||||||
|
|
||||||
return join(fdir, fname)
|
return join(fdir, fname)
|
||||||
|
|
||||||
def density_field_path(self, mas, nsim):
|
def density_field_path(self, mas, nsim):
|
||||||
|
|
|
@ -215,7 +215,10 @@ class ParticleReader:
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
out : array
|
out : structured array or 2-dimensional array
|
||||||
|
Particle information.
|
||||||
|
pids : 1-dimensional array
|
||||||
|
Particle IDs.
|
||||||
"""
|
"""
|
||||||
# Open the particle files
|
# Open the particle files
|
||||||
nparts, partfiles = self.open_particle(nsnap, nsim, verbose=verbose)
|
nparts, partfiles = self.open_particle(nsnap, nsim, verbose=verbose)
|
||||||
|
@ -233,6 +236,8 @@ class ParticleReader:
|
||||||
# Check there are no strange parameters
|
# Check there are no strange parameters
|
||||||
if isinstance(pars_extract, str):
|
if isinstance(pars_extract, str):
|
||||||
pars_extract = [pars_extract]
|
pars_extract = [pars_extract]
|
||||||
|
if "ID" in pars_extract:
|
||||||
|
pars_extract.remove("ID")
|
||||||
for p in pars_extract:
|
for p in pars_extract:
|
||||||
if p not in fnames:
|
if p not in fnames:
|
||||||
raise ValueError(f"Undefined parameter `{p}`.")
|
raise ValueError(f"Undefined parameter `{p}`.")
|
||||||
|
@ -250,6 +255,7 @@ class ParticleReader:
|
||||||
par2arrpos = {par: i for i, par in enumerate(pars_extract)}
|
par2arrpos = {par: i for i, par in enumerate(pars_extract)}
|
||||||
out = numpy.full((npart_tot, len(pars_extract)), numpy.nan,
|
out = numpy.full((npart_tot, len(pars_extract)), numpy.nan,
|
||||||
dtype=numpy.float32)
|
dtype=numpy.float32)
|
||||||
|
pids = numpy.full(npart_tot, numpy.nan, dtype=numpy.int32)
|
||||||
|
|
||||||
start_ind = self.nparts_to_start_ind(nparts)
|
start_ind = self.nparts_to_start_ind(nparts)
|
||||||
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
||||||
|
@ -257,19 +263,21 @@ class ParticleReader:
|
||||||
i = start_ind[cpu]
|
i = start_ind[cpu]
|
||||||
j = nparts[cpu]
|
j = nparts[cpu]
|
||||||
for (fname, fdtype) in zip(fnames, fdtypes):
|
for (fname, fdtype) in zip(fnames, fdtypes):
|
||||||
if fname in pars_extract:
|
|
||||||
single_part = self.read_sp(fdtype, partfiles[cpu])
|
single_part = self.read_sp(fdtype, partfiles[cpu])
|
||||||
|
if fname == "ID":
|
||||||
|
pids[i:i + j] = single_part
|
||||||
|
elif fname in pars_extract:
|
||||||
if return_structured:
|
if return_structured:
|
||||||
out[fname][i:i + j] = single_part
|
out[fname][i:i + j] = single_part
|
||||||
else:
|
else:
|
||||||
out[i:i + j, par2arrpos[fname]] = single_part
|
out[i:i + j, par2arrpos[fname]] = single_part
|
||||||
else:
|
else:
|
||||||
dum[i:i + j] = self.read_sp(fdtype, partfiles[cpu])
|
dum[i:i + j] = single_part
|
||||||
# Close the fortran files
|
# Close the fortran files
|
||||||
for partfile in partfiles:
|
for partfile in partfiles:
|
||||||
partfile.close()
|
partfile.close()
|
||||||
|
|
||||||
return out
|
return out, pids
|
||||||
|
|
||||||
def open_unbinding(self, nsnap, nsim, cpu):
|
def open_unbinding(self, nsnap, nsim, cpu):
|
||||||
"""
|
"""
|
||||||
|
@ -389,11 +397,16 @@ class ParticleReader:
|
||||||
class MmainReader:
|
class MmainReader:
|
||||||
"""
|
"""
|
||||||
Object to generate the summed substructure catalogue.
|
Object to generate the summed substructure catalogue.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
paths : :py:class:`csiborgtools.read.CSiBORGPaths`
|
||||||
|
Paths objects.
|
||||||
"""
|
"""
|
||||||
_paths = None
|
_paths = None
|
||||||
|
|
||||||
def __init__(self, paths):
|
def __init__(self, paths):
|
||||||
assert isinstance(paths, CSiBORGPaths) # REMOVE
|
assert isinstance(paths, CSiBORGPaths)
|
||||||
self._paths = paths
|
self._paths = paths
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -444,7 +457,7 @@ class MmainReader:
|
||||||
def make_mmain(self, nsim, verbose=False):
|
def make_mmain(self, nsim, verbose=False):
|
||||||
"""
|
"""
|
||||||
Make the summed substructure catalogue for a final snapshot. Includes
|
Make the summed substructure catalogue for a final snapshot. Includes
|
||||||
the position of the paren, the summed mass and the fraction of mass in
|
the position of the parent, the summed mass and the fraction of mass in
|
||||||
substructure.
|
substructure.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
|
@ -472,10 +485,10 @@ class MmainReader:
|
||||||
nmain = numpy.sum(mask_main)
|
nmain = numpy.sum(mask_main)
|
||||||
# Preallocate already the output array
|
# Preallocate already the output array
|
||||||
out = cols_to_structured(
|
out = cols_to_structured(
|
||||||
nmain, [("ID", numpy.int32), ("x", numpy.float32),
|
nmain, [("index", numpy.int32), ("x", numpy.float32),
|
||||||
("y", numpy.float32), ("z", numpy.float32),
|
("y", numpy.float32), ("z", numpy.float32),
|
||||||
("M", numpy.float32), ("subfrac", numpy.float32)])
|
("M", numpy.float32), ("subfrac", numpy.float32)])
|
||||||
out["ID"] = clumparr["index"][mask_main]
|
out["index"] = clumparr["index"][mask_main]
|
||||||
# Because for these index == parent
|
# Because for these index == parent
|
||||||
for p in ('x', 'y', 'z'):
|
for p in ('x', 'y', 'z'):
|
||||||
out[p] = clumparr[p][mask_main]
|
out[p] = clumparr[p][mask_main]
|
||||||
|
@ -483,7 +496,7 @@ class MmainReader:
|
||||||
for i in range(nmain):
|
for i in range(nmain):
|
||||||
# Should include the main halo itself, i.e. its own ultimate parent
|
# Should include the main halo itself, i.e. its own ultimate parent
|
||||||
out["M"][i] = numpy.sum(
|
out["M"][i] = numpy.sum(
|
||||||
clumparr["mass_cl"][ultimate_parent == out["ID"][i]])
|
clumparr["mass_cl"][ultimate_parent == out["index"][i]])
|
||||||
|
|
||||||
out["subfrac"] = 1 - clumparr["mass_cl"][mask_main] / out["M"]
|
out["subfrac"] = 1 - clumparr["mass_cl"][mask_main] / out["M"]
|
||||||
return out, ultimate_parent
|
return out, ultimate_parent
|
||||||
|
@ -549,3 +562,69 @@ def halfwidth_select(hw, particles):
|
||||||
for p in ('x', 'y', 'z'):
|
for p in ('x', 'y', 'z'):
|
||||||
particles[p] = (particles[p] - 0.5 + hw) / (2 * hw)
|
particles[p] = (particles[p] - 0.5 + hw) / (2 * hw)
|
||||||
return particles
|
return particles
|
||||||
|
|
||||||
|
|
||||||
|
def load_clump_particles(clid, particles, clump_map, clid2map):
|
||||||
|
"""
|
||||||
|
Load a clump's particles from a particle array. If it is not there, i.e
|
||||||
|
clump has no associated particles, return `None`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
clid : int
|
||||||
|
Clump ID.
|
||||||
|
particles : 2-dimensional array
|
||||||
|
Array of particles.
|
||||||
|
clump_map : 2-dimensional array
|
||||||
|
Array containing start and end indices in the particle array
|
||||||
|
corresponding to each clump.
|
||||||
|
clid2map : dict
|
||||||
|
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
clump_particles : 2-dimensional array
|
||||||
|
Particle array of this clump.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
k0, kf = clump_map[clid2map[clid], 1:]
|
||||||
|
return particles[k0:kf + 1, :]
|
||||||
|
except KeyError:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def load_parent_particles(hid, particles, clump_map, clid2map, clumps_cat):
|
||||||
|
"""
|
||||||
|
Load a parent halo's particles from a particle array. If it is not there,
|
||||||
|
return `None`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
hid : int
|
||||||
|
Halo ID.
|
||||||
|
particles : 2-dimensional array
|
||||||
|
Array of particles.
|
||||||
|
clump_map : 2-dimensional array
|
||||||
|
Array containing start and end indices in the particle array
|
||||||
|
corresponding to each clump.
|
||||||
|
clid2map : dict
|
||||||
|
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||||
|
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||||
|
Clumps catalogue.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
halo : 2-dimensional array
|
||||||
|
Particle array of this halo.
|
||||||
|
"""
|
||||||
|
clids = clumps_cat["index"][clumps_cat["parent"] == hid]
|
||||||
|
# We first load the particles of each clump belonging to this parent
|
||||||
|
# and then concatenate them for further analysis.
|
||||||
|
clumps = []
|
||||||
|
for clid in clids:
|
||||||
|
parts = load_clump_particles(clid, particles, clump_map, clid2map)
|
||||||
|
if parts is not None:
|
||||||
|
clumps.append(parts)
|
||||||
|
if len(clumps) == 0:
|
||||||
|
return None
|
||||||
|
return numpy.concatenate(clumps)
|
||||||
|
|
|
@ -15,7 +15,10 @@
|
||||||
"""
|
"""
|
||||||
Various coordinate transformations.
|
Various coordinate transformations.
|
||||||
"""
|
"""
|
||||||
|
from os.path import isfile
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
from h5py import File
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Coordinate transforms #
|
# Coordinate transforms #
|
||||||
|
@ -291,14 +294,35 @@ def extract_from_structured(arr, cols):
|
||||||
cols = [cols] if isinstance(cols, str) else cols
|
cols = [cols] if isinstance(cols, str) else cols
|
||||||
for col in cols:
|
for col in cols:
|
||||||
if col not in arr.dtype.names:
|
if col not in arr.dtype.names:
|
||||||
raise ValueError("Invalid column `{}`!".format(col))
|
raise ValueError(f"Invalid column `{col}`!")
|
||||||
# Preallocate an array and populate it
|
# Preallocate an array and populate it
|
||||||
out = numpy.zeros((arr.size, len(cols)), dtype=arr[cols[0]].dtype)
|
out = numpy.zeros((arr.size, len(cols)), dtype=arr[cols[0]].dtype)
|
||||||
for i, col in enumerate(cols):
|
for i, col in enumerate(cols):
|
||||||
out[:, i] = arr[col]
|
out[:, i] = arr[col]
|
||||||
# Optionally flatten
|
# Optionally flatten
|
||||||
if len(cols) == 1:
|
if len(cols) == 1:
|
||||||
return out.reshape(
|
return out.reshape(-1, )
|
||||||
-1,
|
|
||||||
)
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# h5py functions #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def read_h5(path):
|
||||||
|
"""
|
||||||
|
Return and return and open `h5py.File` object.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
path : str
|
||||||
|
Path to the file.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
file : `h5py.File`
|
||||||
|
"""
|
||||||
|
if not isfile(path):
|
||||||
|
raise IOError(f"File `{path}` does not exist!")
|
||||||
|
return File(path, "r")
|
||||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -18,9 +18,7 @@ realisation must have been split in advance by `runsplit_halos`.
|
||||||
"""
|
"""
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from os.path import join
|
|
||||||
|
|
||||||
import h5py
|
|
||||||
import numpy
|
import numpy
|
||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
@ -33,20 +31,26 @@ except ModuleNotFoundError:
|
||||||
sys.path.append("../")
|
sys.path.append("../")
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
|
||||||
parser = ArgumentParser()
|
|
||||||
parser.add_argument("--kind", type=str, choices=["halos", "clumps"])
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
# Get MPI things
|
# Get MPI things
|
||||||
comm = MPI.COMM_WORLD
|
comm = MPI.COMM_WORLD
|
||||||
rank = comm.Get_rank()
|
rank = comm.Get_rank()
|
||||||
nproc = comm.Get_size()
|
nproc = comm.Get_size()
|
||||||
|
verbose = nproc == 1
|
||||||
|
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--kind", type=str, choices=["halos", "clumps"])
|
||||||
|
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||||
|
help="IC realisations. If `-1` processes all simulations.")
|
||||||
|
args = parser.parse_args()
|
||||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||||
partreader = csiborgtools.read.ParticleReader(paths)
|
partreader = csiborgtools.read.ParticleReader(paths)
|
||||||
nfwpost = csiborgtools.fits.NFWPosterior()
|
nfwpost = csiborgtools.fits.NFWPosterior()
|
||||||
ftemp = join(paths.temp_dumpdir, "fit_clump_{}_{}_{}.npy")
|
|
||||||
|
if args.ics is None or args.ics[0] == -1:
|
||||||
|
ics = paths.get_ics(tonew=False)
|
||||||
|
else:
|
||||||
|
ics = args.ics
|
||||||
|
|
||||||
cols_collect = [
|
cols_collect = [
|
||||||
("index", numpy.int32),
|
("index", numpy.int32),
|
||||||
("npart", numpy.int32),
|
("npart", numpy.int32),
|
||||||
|
@ -63,7 +67,7 @@ cols_collect = [
|
||||||
("lambda200c", numpy.float32),
|
("lambda200c", numpy.float32),
|
||||||
("r200m", numpy.float32),
|
("r200m", numpy.float32),
|
||||||
("m200m", numpy.float32),
|
("m200m", numpy.float32),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def fit_clump(particles, clump_info, box):
|
def fit_clump(particles, clump_info, box):
|
||||||
|
@ -95,46 +99,19 @@ def fit_clump(particles, clump_info, box):
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
def load_clump_particles(clumpid, particles, clump_map):
|
# We MPI loop over all simulations.
|
||||||
"""
|
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
||||||
Load a clump's particles. If it is not there, i.e clump has no associated
|
for nsim in [ics[i] for i in jobs]:
|
||||||
particles, return `None`.
|
print(f"{datetime.now()}: rank {rank} calculating simulation `{nsim}`.",
|
||||||
"""
|
|
||||||
try:
|
|
||||||
return particles[clump_map[clumpid], :]
|
|
||||||
except KeyError:
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def load_parent_particles(clumpid, particles, clump_map, clumps_cat):
|
|
||||||
"""
|
|
||||||
Load a parent halo's particles.
|
|
||||||
"""
|
|
||||||
indxs = clumps_cat["index"][clumps_cat["parent"] == clumpid]
|
|
||||||
# We first load the particles of each clump belonging to this parent
|
|
||||||
# and then concatenate them for further analysis.
|
|
||||||
clumps = []
|
|
||||||
for ind in indxs:
|
|
||||||
parts = load_clump_particles(ind, particles, clump_map)
|
|
||||||
if parts is not None:
|
|
||||||
clumps.append(parts)
|
|
||||||
|
|
||||||
if len(clumps) == 0:
|
|
||||||
return None
|
|
||||||
return numpy.concatenate(clumps)
|
|
||||||
|
|
||||||
|
|
||||||
# We now start looping over all simulations
|
|
||||||
for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: calculating {i}th simulation `{nsim}`.",
|
|
||||||
flush=True)
|
flush=True)
|
||||||
nsnap = max(paths.get_snapshots(nsim))
|
nsnap = max(paths.get_snapshots(nsim))
|
||||||
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
||||||
|
|
||||||
# Particle archive
|
# Particle archive
|
||||||
particles = h5py.File(paths.particle_h5py_path(nsim), 'r')["particles"]
|
f = csiborgtools.read.read_h5(paths.particles_path(nsim))
|
||||||
clump_map = h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), 'r')
|
particles = f["particles"]
|
||||||
|
clump_map = f["clumpmap"]
|
||||||
|
clid2map = {clid: i for i, clid in enumerate(clump_map[:, 0])}
|
||||||
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True,
|
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||||
load_fitted=False)
|
load_fitted=False)
|
||||||
# We check whether we fit halos or clumps, will be indexing over different
|
# We check whether we fit halos or clumps, will be indexing over different
|
||||||
|
@ -143,66 +120,39 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
||||||
ismain = clumps_cat.ismain
|
ismain = clumps_cat.ismain
|
||||||
else:
|
else:
|
||||||
ismain = numpy.ones(len(clumps_cat), dtype=bool)
|
ismain = numpy.ones(len(clumps_cat), dtype=bool)
|
||||||
ntasks = len(clumps_cat)
|
|
||||||
# We split the clumps among the processes. Each CPU calculates a fraction
|
|
||||||
# of them and dumps the results in a structured array. Even if we are
|
|
||||||
# calculating parent halo this index runs over all clumps.
|
|
||||||
jobs = csiborgtools.fits.split_jobs(ntasks, nproc)[rank]
|
|
||||||
out = csiborgtools.read.cols_to_structured(len(jobs), cols_collect)
|
|
||||||
for i, j in enumerate(tqdm(jobs)) if nproc == 1 else enumerate(jobs):
|
|
||||||
clumpid = clumps_cat["index"][j]
|
|
||||||
out["index"][i] = clumpid
|
|
||||||
|
|
||||||
|
# Even if we are calculating parent halo this index runs over all clumps.
|
||||||
|
out = csiborgtools.read.cols_to_structured(len(clumps_cat), cols_collect)
|
||||||
|
indxs = clumps_cat["index"]
|
||||||
|
for i, clid in enumerate(tqdm(indxs)) if verbose else enumerate(indxs):
|
||||||
|
clid = clumps_cat["index"][i]
|
||||||
|
out["index"][i] = clid
|
||||||
# If we are fitting halos and this clump is not a main, then continue.
|
# If we are fitting halos and this clump is not a main, then continue.
|
||||||
if args.kind == "halos" and not ismain[j]:
|
if args.kind == "halos" and not ismain[i]:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if args.kind == "halos":
|
if args.kind == "halos":
|
||||||
part = load_parent_particles(clumpid, particles, clump_map,
|
part = csiborgtools.read.load_parent_particles(
|
||||||
clumps_cat)
|
clid, particles, clump_map, clid2map, clumps_cat)
|
||||||
else:
|
else:
|
||||||
part = load_clump_particles(clumpid, particles, clump_map)
|
part = csiborgtools.read.load_clump_particles(clid, particles,
|
||||||
|
clump_map, clid2map)
|
||||||
|
|
||||||
# We fit the particles if there are any. If not we assign the index,
|
# We fit the particles if there are any. If not we assign the index,
|
||||||
# otherwise it would be NaN converted to integers (-2147483648) and
|
# otherwise it would be NaN converted to integers (-2147483648) and
|
||||||
# yield an error further down.
|
# yield an error further down.
|
||||||
if part is not None:
|
if part is None:
|
||||||
_out = fit_clump(part, clumps_cat[j], box)
|
continue
|
||||||
|
|
||||||
|
_out = fit_clump(part, clumps_cat[i], box)
|
||||||
for key in _out.keys():
|
for key in _out.keys():
|
||||||
out[key][i] = _out[key]
|
out[key][i] = _out[key]
|
||||||
|
|
||||||
fout = ftemp.format(str(nsim).zfill(5), str(nsnap).zfill(5), rank)
|
# Finally, we save the results. If we were analysing main halos, then
|
||||||
if nproc == 0:
|
# remove array indices that do not correspond to parent halos.
|
||||||
print(f"{datetime.now()}: rank {rank} saving to `{fout}`.", flush=True)
|
|
||||||
numpy.save(fout, out)
|
|
||||||
# We saved this CPU's results in a temporary file. Wait now for the other
|
|
||||||
# CPUs and then collect results from the 0th rank and save them.
|
|
||||||
comm.Barrier()
|
|
||||||
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: collecting results for simulation `{nsim}`.",
|
|
||||||
flush=True)
|
|
||||||
# We write to the output array. Load data from each CPU and append to
|
|
||||||
# the output array.
|
|
||||||
out = csiborgtools.read.cols_to_structured(ntasks, cols_collect)
|
|
||||||
clumpid2outpos = {indx: i
|
|
||||||
for i, indx in enumerate(clumps_cat["index"])}
|
|
||||||
for i in range(nproc):
|
|
||||||
inp = numpy.load(ftemp.format(str(nsim).zfill(5),
|
|
||||||
str(nsnap).zfill(5), i))
|
|
||||||
for j, clumpid in enumerate(inp["index"]):
|
|
||||||
k = clumpid2outpos[clumpid]
|
|
||||||
for key in inp.dtype.names:
|
|
||||||
out[key][k] = inp[key][j]
|
|
||||||
|
|
||||||
# If we were analysing main halos, then remove array indices that do
|
|
||||||
# not correspond to parent halos.
|
|
||||||
if args.kind == "halos":
|
if args.kind == "halos":
|
||||||
out = out[ismain]
|
out = out[ismain]
|
||||||
|
|
||||||
fout = paths.structfit_path(nsnap, nsim, args.kind)
|
fout = paths.structfit_path(nsnap, nsim, args.kind)
|
||||||
print(f"Saving to `{fout}`.", flush=True)
|
print(f"Saving to `{fout}`.", flush=True)
|
||||||
numpy.save(fout, out)
|
numpy.save(fout, out)
|
||||||
|
|
||||||
# We now wait before moving on to another simulation.
|
|
||||||
comm.Barrier()
|
|
||||||
|
|
104
scripts/fit_init.py
Normal file
104
scripts/fit_init.py
Normal file
|
@ -0,0 +1,104 @@
|
||||||
|
# Copyright (C) 2022 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
"""
|
||||||
|
Script to calculate the particle centre of mass, Lagrangian patch size in the
|
||||||
|
initial snapshot. The initial snapshot particles are read from the sorted
|
||||||
|
files.
|
||||||
|
"""
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from mpi4py import MPI
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
try:
|
||||||
|
import csiborgtools
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
import sys
|
||||||
|
|
||||||
|
sys.path.append("../")
|
||||||
|
import csiborgtools
|
||||||
|
|
||||||
|
|
||||||
|
# Get MPI things
|
||||||
|
comm = MPI.COMM_WORLD
|
||||||
|
rank = comm.Get_rank()
|
||||||
|
nproc = comm.Get_size()
|
||||||
|
verbose = nproc == 1
|
||||||
|
|
||||||
|
# Argument parser
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||||
|
help="IC realisations. If `-1` processes all simulations.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||||
|
partreader = csiborgtools.read.ParticleReader(paths)
|
||||||
|
|
||||||
|
if args.ics is None or args.ics[0] == -1:
|
||||||
|
ics = paths.get_ics(tonew=True)
|
||||||
|
else:
|
||||||
|
ics = args.ics
|
||||||
|
|
||||||
|
cols_collect = [("index", numpy.int32),
|
||||||
|
("x", numpy.float32),
|
||||||
|
("y", numpy.float32),
|
||||||
|
("z", numpy.float32),
|
||||||
|
("lagpatch", numpy.float32),]
|
||||||
|
|
||||||
|
|
||||||
|
# MPI loop over simulations
|
||||||
|
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
||||||
|
for nsim in [ics[i] for i in jobs]:
|
||||||
|
nsnap = max(paths.get_snapshots(nsim))
|
||||||
|
print(f"{datetime.now()}: rank {rank} calculating simulation `{nsim}`.",
|
||||||
|
flush=True)
|
||||||
|
|
||||||
|
parts = csiborgtools.read.read_h5(paths.initmatch_path(nsim, "particles"))
|
||||||
|
parts = parts['particles']
|
||||||
|
clump_map = csiborgtools.read.read_h5(paths.particles_path(nsim))
|
||||||
|
clump_map = clump_map["clumpmap"]
|
||||||
|
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||||
|
load_fitted=False)
|
||||||
|
clid2map = {clid: i for i, clid in enumerate(clump_map[:, 0])}
|
||||||
|
ismain = clumps_cat.ismain
|
||||||
|
|
||||||
|
out = csiborgtools.read.cols_to_structured(len(clumps_cat), cols_collect)
|
||||||
|
indxs = clumps_cat["index"]
|
||||||
|
for i, hid in enumerate(tqdm(indxs) if verbose else indxs):
|
||||||
|
out["index"][i] = hid
|
||||||
|
if not ismain[i]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
part = csiborgtools.read.load_parent_particles(hid, parts, clump_map,
|
||||||
|
clid2map, clumps_cat)
|
||||||
|
# Skip if the halo is too small.
|
||||||
|
if part is None or part.size < 100:
|
||||||
|
continue
|
||||||
|
|
||||||
|
dist, cm = csiborgtools.fits.dist_centmass(part)
|
||||||
|
# We enforce a maximum patchsize of 0.075 in box coordinates.
|
||||||
|
patchsize = min(numpy.percentile(dist, 99), 0.075)
|
||||||
|
out["x"][i], out["y"][i], out["z"][i] = cm
|
||||||
|
out["lagpatch"][i] = patchsize
|
||||||
|
|
||||||
|
out = out[ismain]
|
||||||
|
# Now save it
|
||||||
|
fout = paths.initmatch_path(nsim, "fit")
|
||||||
|
print(f"{datetime.now()}: dumping fits to .. `{fout}`.",
|
||||||
|
flush=True)
|
||||||
|
with open(fout, "wb") as f:
|
||||||
|
numpy.save(f, out)
|
|
@ -54,35 +54,6 @@ else:
|
||||||
nsims = args.ics
|
nsims = args.ics
|
||||||
|
|
||||||
|
|
||||||
def load_clump_particles(clumpid, particles, clump_map):
|
|
||||||
"""
|
|
||||||
Load a clump's particles. If it is not there, i.e clump has no associated
|
|
||||||
particles, return `None`.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
return particles[clump_map[clumpid], :]
|
|
||||||
except KeyError:
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def load_parent_particles(clumpid, particles, clump_map, clumps_cat):
|
|
||||||
"""
|
|
||||||
Load a parent halo's particles.
|
|
||||||
"""
|
|
||||||
indxs = clumps_cat["index"][clumps_cat["parent"] == clumpid]
|
|
||||||
# We first load the particles of each clump belonging to this parent
|
|
||||||
# and then concatenate them for further analysis.
|
|
||||||
clumps = []
|
|
||||||
for ind in indxs:
|
|
||||||
parts = load_clump_particles(ind, particles, clump_map)
|
|
||||||
if parts is not None:
|
|
||||||
clumps.append(parts)
|
|
||||||
|
|
||||||
if len(clumps) == 0:
|
|
||||||
return None
|
|
||||||
return numpy.concatenate(clumps)
|
|
||||||
|
|
||||||
|
|
||||||
# We loop over simulations. Here later optionally add MPI.
|
# We loop over simulations. Here later optionally add MPI.
|
||||||
for i, nsim in enumerate(nsims):
|
for i, nsim in enumerate(nsims):
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
@ -91,10 +62,11 @@ for i, nsim in enumerate(nsims):
|
||||||
nsnap = max(paths.get_snapshots(nsim))
|
nsnap = max(paths.get_snapshots(nsim))
|
||||||
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
||||||
|
|
||||||
particles = h5py.File(paths.particle_h5py_path(nsim), 'r')["particles"]
|
f = csiborgtools.read.read_h5(paths.particles_path(nsim))
|
||||||
clump_map = h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), 'r')
|
particles = f["particles"]
|
||||||
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, maxdist=None,
|
clump_map = f["clumpmap"]
|
||||||
minmass=None, rawdata=True,
|
clid2map = {clid: i for i, clid in enumerate(clump_map[:, 0])}
|
||||||
|
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||||
load_fitted=False)
|
load_fitted=False)
|
||||||
ismain = clumps_cat.ismain
|
ismain = clumps_cat.ismain
|
||||||
ntasks = len(clumps_cat)
|
ntasks = len(clumps_cat)
|
||||||
|
@ -108,8 +80,8 @@ for i, nsim in enumerate(nsims):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
clumpid = clumps_cat["index"][j]
|
clumpid = clumps_cat["index"][j]
|
||||||
parts = load_parent_particles(clumpid, particles, clump_map,
|
parts = csiborgtools.read.load_parent_particles(
|
||||||
clumps_cat)
|
clumpid, particles, clump_map, clid2map, clumps_cat)
|
||||||
# If we have no particles, then do not save anything.
|
# If we have no particles, then do not save anything.
|
||||||
if parts is None:
|
if parts is None:
|
||||||
continue
|
continue
|
||||||
|
@ -124,8 +96,7 @@ for i, nsim in enumerate(nsims):
|
||||||
|
|
||||||
_out["r"] = r[mask]
|
_out["r"] = r[mask]
|
||||||
_out["M"] = obj["M"][mask]
|
_out["M"] = obj["M"][mask]
|
||||||
|
out[str(clumpid)] = _out
|
||||||
out[str(clumps_cat["index"][j])] = _out
|
|
||||||
|
|
||||||
# Finished, so we save everything.
|
# Finished, so we save everything.
|
||||||
fout = paths.radpos_path(nsnap, nsim)
|
fout = paths.radpos_path(nsnap, nsim)
|
||||||
|
|
|
@ -13,6 +13,7 @@
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
"""A script to calculate overlap between two CSiBORG realisations."""
|
"""A script to calculate overlap between two CSiBORG realisations."""
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
|
from copy import deepcopy
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from distutils.util import strtobool
|
from distutils.util import strtobool
|
||||||
|
|
||||||
|
@ -26,13 +27,16 @@ except ModuleNotFoundError:
|
||||||
|
|
||||||
sys.path.append("../")
|
sys.path.append("../")
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
from csiborgtools.read import HaloCatalogue, read_h5
|
||||||
|
|
||||||
# Argument parser
|
# Argument parser
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
parser.add_argument("--nsim0", type=int)
|
parser.add_argument("--nsim0", type=int)
|
||||||
parser.add_argument("--nsimx", type=int)
|
parser.add_argument("--nsimx", type=int)
|
||||||
parser.add_argument("--nmult", type=float)
|
parser.add_argument("--nmult", type=float)
|
||||||
parser.add_argument("--sigma", type=float)
|
parser.add_argument("--sigma", type=float, default=None)
|
||||||
|
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
|
||||||
|
default=None)
|
||||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||||
default=False)
|
default=False)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
@ -43,27 +47,52 @@ matcher = csiborgtools.match.RealisationsMatcher()
|
||||||
|
|
||||||
# Load the raw catalogues (i.e. no selection) including the initial CM
|
# Load the raw catalogues (i.e. no selection) including the initial CM
|
||||||
# positions and the particle archives.
|
# positions and the particle archives.
|
||||||
cat0 = csiborgtools.read.HaloCatalogue(args.nsim0, paths, load_initial=True,
|
cat0 = HaloCatalogue(args.nsim0, paths, load_initial=True,
|
||||||
rawdata=True)
|
minmass=("totpartmass", 1e12), with_lagpatch=True)
|
||||||
catx = csiborgtools.read.HaloCatalogue(args.nsimx, paths, load_initial=True,
|
catx = HaloCatalogue(args.nsimx, paths, load_initial=True,
|
||||||
rawdata=True)
|
minmass=("totpartmass", 1e12), with_lagpatch=True)
|
||||||
halos0_archive = paths.initmatch_path(args.nsim0, "particles")
|
|
||||||
halosx_archive = paths.initmatch_path(args.nsimx, "particles")
|
clumpmap0 = read_h5(paths.particles_path(args.nsim0))["clumpmap"]
|
||||||
|
parts0 = read_h5(paths.initmatch_path(args.nsim0, "particles"))["particles"]
|
||||||
|
clid2map0 = {clid: i for i, clid in enumerate(clumpmap0[:, 0])}
|
||||||
|
|
||||||
|
clumpmapx = read_h5(paths.particles_path(args.nsimx))["clumpmap"]
|
||||||
|
partsx = read_h5(paths.initmatch_path(args.nsimx, "particles"))["particles"]
|
||||||
|
clid2mapx = {clid: i for i, clid in enumerate(clumpmapx[:, 0])}
|
||||||
|
|
||||||
|
|
||||||
# We generate the background density fields. Loads halos's particles one by one
|
# We generate the background density fields. Loads halos's particles one by one
|
||||||
# from the archive, concatenates them and calculates the NGP density field.
|
# from the archive, concatenates them and calculates the NGP density field.
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
print(f"{datetime.now()}: generating the background density fields.",
|
print(f"{datetime.now()}: generating the background density fields.",
|
||||||
flush=True)
|
flush=True)
|
||||||
delta_bckg = overlapper.make_bckg_delta(halos0_archive, verbose=args.verbose)
|
delta_bckg = overlapper.make_bckg_delta(parts0, clumpmap0, clid2map0, cat0,
|
||||||
delta_bckg = overlapper.make_bckg_delta(halosx_archive, delta=delta_bckg,
|
|
||||||
verbose=args.verbose)
|
verbose=args.verbose)
|
||||||
|
delta_bckg = overlapper.make_bckg_delta(partsx, clumpmapx, clid2mapx, catx,
|
||||||
|
delta=delta_bckg, verbose=args.verbose)
|
||||||
|
|
||||||
# We calculate the overlap between the NGP fields.
|
# We calculate the overlap between the NGP fields.
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
print(f"{datetime.now()}: crossing the simulations.", flush=True)
|
print(f"{datetime.now()}: crossing the simulations.", flush=True)
|
||||||
match_indxs, ngp_overlap = matcher.cross(cat0, catx, halos0_archive,
|
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx, clumpmap0,
|
||||||
halosx_archive, delta_bckg)
|
clumpmapx, delta_bckg,
|
||||||
|
verbose=args.verbose)
|
||||||
|
# We wish to store the halo IDs of the matches, not their array positions in
|
||||||
|
# the catalogues
|
||||||
|
match_hids = deepcopy(match_indxs)
|
||||||
|
for i, matches in enumerate(match_indxs):
|
||||||
|
for j, match in enumerate(matches):
|
||||||
|
match_hids[i][j] = catx["index"][match]
|
||||||
|
|
||||||
|
fout = paths.overlap_path(args.nsim0, args.nsimx, smoothed=False)
|
||||||
|
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
|
||||||
|
ngp_overlap=ngp_overlap)
|
||||||
|
if args.verbose:
|
||||||
|
print(f"{datetime.now()}: calculated NGP overlap, saved to {fout}.",
|
||||||
|
flush=True)
|
||||||
|
|
||||||
|
if not args.smoothen:
|
||||||
|
quit()
|
||||||
|
|
||||||
# We now smoothen up the background density field for the smoothed overlap
|
# We now smoothen up the background density field for the smoothed overlap
|
||||||
# calculation.
|
# calculation.
|
||||||
|
@ -72,16 +101,12 @@ if args.verbose:
|
||||||
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
|
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
|
||||||
|
|
||||||
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
|
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
|
||||||
if args.verbose:
|
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
|
||||||
print(f"{datetime.now()}: calculating smoothed overlaps.", flush=True)
|
clumpmap0, clumpmapx, delta_bckg,
|
||||||
smoothed_overlap = matcher.smoothed_cross(cat0, catx, halos0_archive,
|
|
||||||
halosx_archive, delta_bckg,
|
|
||||||
match_indxs, smooth_kwargs)
|
match_indxs, smooth_kwargs)
|
||||||
|
|
||||||
# We save the results at long last.
|
fout = paths.overlap_path(args.nsim0, args.nsimx, smoothed=True)
|
||||||
fout = paths.overlap_path(args.nsim0, args.nsimx)
|
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=args.sigma)
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
print(f"{datetime.now()}: saving results to `{fout}`.", flush=True)
|
print(f"{datetime.now()}: calculated smoothed overlap, saved to {fout}.",
|
||||||
numpy.savez(fout, match_indxs=match_indxs, ngp_overlap=ngp_overlap,
|
flush=True)
|
||||||
smoothed_overlap=smoothed_overlap, sigma=args.sigma)
|
|
||||||
print(f"{datetime.now()}: all finished.", flush=True)
|
|
||||||
|
|
|
@ -12,18 +12,20 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
"""
|
"""
|
||||||
Script to load in the simulation particles and dump them to a HDF5 file.
|
Script to load in the simulation particles, load them by their clump ID and
|
||||||
Creates a mapping to access directly particles of a single clump.
|
dump into a HDF5 file. Stores the first and last index of each clump in the
|
||||||
|
particle array. This can be used for fast slicing of the array to acces
|
||||||
|
particles of a single clump.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from distutils.util import strtobool
|
|
||||||
from gc import collect
|
from gc import collect
|
||||||
|
|
||||||
import h5py
|
import h5py
|
||||||
|
import numba
|
||||||
import numpy
|
import numpy
|
||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
from tqdm import tqdm
|
from tqdm import trange
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
@ -44,75 +46,109 @@ nproc = comm.Get_size()
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||||
help="IC realisations. If `-1` processes all simulations.")
|
help="IC realisations. If `-1` processes all simulations.")
|
||||||
parser.add_argument("--pos_only", type=lambda x: bool(strtobool(x)),
|
|
||||||
help="Do we only dump positions?")
|
|
||||||
parser.add_argument("--dtype", type=str, choices=["float32", "float64"],
|
|
||||||
default="float32",)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
verbose = nproc == 1
|
verbose = nproc == 1
|
||||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||||
partreader = csiborgtools.read.ParticleReader(paths)
|
partreader = csiborgtools.read.ParticleReader(paths)
|
||||||
|
# Keep "ID" as the last column!
|
||||||
if args.pos_only:
|
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
|
||||||
pars_extract = ['x', 'y', 'z', 'M']
|
|
||||||
else:
|
|
||||||
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
|
||||||
|
|
||||||
if args.ics is None or args.ics[0] == -1:
|
if args.ics is None or args.ics[0] == -1:
|
||||||
ics = paths.get_ics(tonew=False)
|
ics = paths.get_ics(tonew=False)
|
||||||
else:
|
else:
|
||||||
ics = args.ics
|
ics = args.ics
|
||||||
|
|
||||||
|
|
||||||
|
@numba.jit(nopython=True)
|
||||||
|
def minmax_clump(clid, clump_ids, start_loop=0):
|
||||||
|
"""
|
||||||
|
Find the start and end index of a clump in a sorted array of clump IDs.
|
||||||
|
This is much faster than using `numpy.where` and then `numpy.min` and
|
||||||
|
`numpy.max`.
|
||||||
|
"""
|
||||||
|
start = None
|
||||||
|
end = None
|
||||||
|
|
||||||
|
for i in range(start_loop, clump_ids.size):
|
||||||
|
n = clump_ids[i]
|
||||||
|
if n == clid:
|
||||||
|
if start is None:
|
||||||
|
start = i
|
||||||
|
end = i
|
||||||
|
elif n > clid:
|
||||||
|
break
|
||||||
|
return start, end
|
||||||
|
|
||||||
|
|
||||||
# MPI loop over individual simulations. We read in the particles from RAMSES
|
# MPI loop over individual simulations. We read in the particles from RAMSES
|
||||||
# files and dump them to a HDF5 file.
|
# files and dump them to a HDF5 file.
|
||||||
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
||||||
for i in jobs:
|
for i in jobs:
|
||||||
nsim = ics[i]
|
nsim = ics[i]
|
||||||
nsnap = max(paths.get_snapshots(nsim))
|
nsnap = max(paths.get_snapshots(nsim))
|
||||||
print(f"{datetime.now()}: Rank {rank} loading particles {nsim}.",
|
fname = paths.particles_path(nsim)
|
||||||
|
# We first read in the clump IDs of the particles and infer the sorting.
|
||||||
|
# Right away we dump the clump IDs to a HDF5 file and clear up memory.
|
||||||
|
print(f"{datetime.now()}: rank {rank} loading particles {nsim}.",
|
||||||
flush=True)
|
flush=True)
|
||||||
|
part_cids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||||
|
sort_indxs = numpy.argsort(part_cids).astype(numpy.int32)
|
||||||
|
part_cids = part_cids[sort_indxs]
|
||||||
|
with h5py.File(fname, "w") as f:
|
||||||
|
f.create_dataset("clump_ids", data=part_cids)
|
||||||
|
f.close()
|
||||||
|
del part_cids
|
||||||
|
collect()
|
||||||
|
|
||||||
parts = partreader.read_particle(nsnap, nsim, pars_extract,
|
# Next we read in the particles and sort them by their clump ID.
|
||||||
return_structured=False, verbose=verbose)
|
# We cannot directly read this as an unstructured array because the float32
|
||||||
if args.dtype == "float64":
|
# precision is insufficient to capture the clump IDs.
|
||||||
parts = parts.astype(numpy.float64)
|
parts, pids = partreader.read_particle(
|
||||||
|
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
|
||||||
kind = "pos" if args.pos_only else None
|
# Now we in two steps save the particles and particle IDs.
|
||||||
|
print(f"{datetime.now()}: rank {rank} dumping particles from {nsim}.",
|
||||||
print(f"{datetime.now()}: Rank {rank} dumping particles from {nsim}.",
|
|
||||||
flush=True)
|
flush=True)
|
||||||
|
parts = parts[sort_indxs]
|
||||||
|
pids = pids[sort_indxs]
|
||||||
|
del sort_indxs
|
||||||
|
collect()
|
||||||
|
|
||||||
with h5py.File(paths.particle_h5py_path(nsim, kind, args.dtype), "w") as f:
|
with h5py.File(fname, "r+") as f:
|
||||||
|
f.create_dataset("particle_ids", data=pids)
|
||||||
|
f.close()
|
||||||
|
del pids
|
||||||
|
collect()
|
||||||
|
|
||||||
|
with h5py.File(fname, "r+") as f:
|
||||||
f.create_dataset("particles", data=parts)
|
f.create_dataset("particles", data=parts)
|
||||||
|
f.close()
|
||||||
del parts
|
del parts
|
||||||
collect()
|
collect()
|
||||||
print(f"{datetime.now()}: Rank {rank} finished dumping of {nsim}.",
|
|
||||||
flush=True)
|
|
||||||
# If we are dumping only particle positions, then we are done.
|
|
||||||
if args.pos_only:
|
|
||||||
continue
|
|
||||||
|
|
||||||
print(f"{datetime.now()}: Rank {rank} mapping particles from {nsim}.",
|
print(f"{datetime.now()}: rank {rank} creating clump mapping for {nsim}.",
|
||||||
flush=True)
|
flush=True)
|
||||||
# If not, then load the clump IDs and prepare the memory mapping. We find
|
# Load clump IDs back to memory
|
||||||
# which array positions correspond to which clump IDs and save it. With
|
with h5py.File(fname, "r") as f:
|
||||||
# this we can then lazily load into memory the particles for each clump.
|
part_cids = f["clump_ids"][:]
|
||||||
part_cids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
# We loop over the unique clump IDs.
|
||||||
cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, load_fitted=False,
|
unique_clump_ids = numpy.unique(part_cids)
|
||||||
rawdata=True)
|
clump_map = numpy.full((unique_clump_ids.size, 3), numpy.nan,
|
||||||
clumpinds = cat["index"]
|
dtype=numpy.int32)
|
||||||
# Some of the clumps have no particles, so we do not loop over them
|
start_loop = 0
|
||||||
clumpinds = clumpinds[numpy.isin(clumpinds, part_cids)]
|
niters = unique_clump_ids.size
|
||||||
|
for i in trange(niters) if verbose else range(niters):
|
||||||
out = {}
|
clid = unique_clump_ids[i]
|
||||||
for i, cid in enumerate(tqdm(clumpinds) if verbose else clumpinds):
|
k0, kf = minmax_clump(clid, part_cids, start_loop=start_loop)
|
||||||
out.update({str(cid): numpy.where(part_cids == cid)[0]})
|
clump_map[i, 0] = clid
|
||||||
|
clump_map[i, 1] = k0
|
||||||
|
clump_map[i, 2] = kf
|
||||||
|
start_loop = kf
|
||||||
|
|
||||||
# We save the mapping to a HDF5 file
|
# We save the mapping to a HDF5 file
|
||||||
with h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), "w") as f:
|
with h5py.File(paths.particles_path(nsim), "r+") as f:
|
||||||
for cid, indxs in out.items():
|
f.create_dataset("clumpmap", data=clump_map)
|
||||||
f.create_dataset(cid, data=indxs)
|
f.close()
|
||||||
|
|
||||||
del part_cids, cat, clumpinds, out
|
del part_cids
|
||||||
collect()
|
collect()
|
||||||
|
|
|
@ -1,199 +0,0 @@
|
||||||
# Copyright (C) 2022 Richard Stiskalek
|
|
||||||
# This program is free software; you can redistribute it and/or modify it
|
|
||||||
# under the terms of the GNU General Public License as published by the
|
|
||||||
# Free Software Foundation; either version 3 of the License, or (at your
|
|
||||||
# option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful, but
|
|
||||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
||||||
# Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU General Public License along
|
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
||||||
"""
|
|
||||||
Script to calculate the particle centre of mass, Lagrangian patch size in the
|
|
||||||
initial snapshot and the particle mapping.
|
|
||||||
"""
|
|
||||||
from argparse import ArgumentParser
|
|
||||||
from os.path import join
|
|
||||||
from datetime import datetime
|
|
||||||
from gc import collect
|
|
||||||
import joblib
|
|
||||||
from os import remove
|
|
||||||
|
|
||||||
import h5py
|
|
||||||
import numpy
|
|
||||||
from mpi4py import MPI
|
|
||||||
from tqdm import trange
|
|
||||||
|
|
||||||
try:
|
|
||||||
import csiborgtools
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
import sys
|
|
||||||
|
|
||||||
sys.path.append("../")
|
|
||||||
import csiborgtools
|
|
||||||
|
|
||||||
|
|
||||||
# Get MPI things
|
|
||||||
comm = MPI.COMM_WORLD
|
|
||||||
rank = comm.Get_rank()
|
|
||||||
nproc = comm.Get_size()
|
|
||||||
verbose = nproc == 1
|
|
||||||
|
|
||||||
# Argument parser
|
|
||||||
parser = ArgumentParser()
|
|
||||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
|
||||||
help="IC realisations. If `-1` processes all simulations.")
|
|
||||||
args = parser.parse_args()
|
|
||||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
|
||||||
partreader = csiborgtools.read.ParticleReader(paths)
|
|
||||||
ftemp = lambda kind, nsim, rank: join(paths.temp_dumpdir, f"{kind}_{nsim}_{rank}.p") # noqa
|
|
||||||
|
|
||||||
if args.ics is None or args.ics[0] == -1:
|
|
||||||
ics = paths.get_ics(tonew=True)
|
|
||||||
else:
|
|
||||||
ics = args.ics
|
|
||||||
|
|
||||||
# We loop over simulations. Each simulation is then procesed with MPI, rank 0
|
|
||||||
# loads the data and broadcasts it to other ranks.
|
|
||||||
for nsim in ics:
|
|
||||||
nsnap = max(paths.get_snapshots(nsim))
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: reading simulation {nsim}.", flush=True)
|
|
||||||
|
|
||||||
# We first load particles in the initial and final snapshots and sort
|
|
||||||
# them by their particle IDs so that we can match them by array
|
|
||||||
# position. `clump_ids` are the clump IDs of particles.
|
|
||||||
part0 = partreader.read_particle(1, nsim, ["x", "y", "z", "M", "ID"],
|
|
||||||
verbose=True,
|
|
||||||
return_structured=False)
|
|
||||||
part0 = part0[numpy.argsort(part0[:, -1])]
|
|
||||||
part0 = part0[:, :-1] # Now we no longer need the particle IDs
|
|
||||||
|
|
||||||
pid = partreader.read_particle(nsnap, nsim, ["ID"], verbose=True,
|
|
||||||
return_structured=False).reshape(-1, )
|
|
||||||
clump_ids = partreader.read_clumpid(nsnap, nsim, verbose=True)
|
|
||||||
clump_ids = clump_ids[numpy.argsort(pid)]
|
|
||||||
# Release the particle IDs, we will not need them anymore now that both
|
|
||||||
# particle arrays are matched in ordering.
|
|
||||||
del pid
|
|
||||||
collect()
|
|
||||||
|
|
||||||
# Particles whose clump ID is 0 are unassigned to a clump, so we can
|
|
||||||
# get rid of them to speed up subsequent operations. We will not need
|
|
||||||
# these. Again we release the mask.
|
|
||||||
mask = clump_ids > 0
|
|
||||||
clump_ids = clump_ids[mask]
|
|
||||||
part0 = part0[mask, :]
|
|
||||||
del mask
|
|
||||||
collect()
|
|
||||||
|
|
||||||
print(f"{datetime.now()}: dumping particles for {nsim}.", flush=True)
|
|
||||||
with h5py.File(paths.initmatch_path(nsim, "particles"), "w") as f:
|
|
||||||
f.create_dataset("particles", data=part0)
|
|
||||||
|
|
||||||
print(f"{datetime.now()}: broadcasting simulation {nsim}.", flush=True)
|
|
||||||
# Stop all ranks and figure out array shapes from the 0th rank
|
|
||||||
comm.Barrier()
|
|
||||||
if rank == 0:
|
|
||||||
shape = numpy.array([*part0.shape], dtype=numpy.int32)
|
|
||||||
else:
|
|
||||||
shape = numpy.empty(2, dtype=numpy.int32)
|
|
||||||
comm.Bcast(shape, root=0)
|
|
||||||
|
|
||||||
# Now broadcast the particle arrays to all ranks
|
|
||||||
if rank > 0:
|
|
||||||
part0 = numpy.empty(shape, dtype=numpy.float32)
|
|
||||||
clump_ids = numpy.empty(shape[0], dtype=numpy.int32)
|
|
||||||
|
|
||||||
comm.Bcast(part0, root=0)
|
|
||||||
comm.Bcast(clump_ids, root=0)
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: simulation {nsim} broadcasted.", flush=True)
|
|
||||||
|
|
||||||
# Calculate the centre of mass of each parent halo, the Lagrangian patch
|
|
||||||
# size and optionally the initial snapshot particles belonging to this
|
|
||||||
# parent halo. Dumping the particles will take majority of time.
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: calculating simulation {nsim}.", flush=True)
|
|
||||||
# We load up the clump catalogue which contains information about the
|
|
||||||
# ultimate parent halos of each clump. We will loop only over the clump
|
|
||||||
# IDs of ultimate parent halos and add their substructure particles and at
|
|
||||||
# the end save these.
|
|
||||||
cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, load_fitted=False,
|
|
||||||
rawdata=True)
|
|
||||||
parent_ids = cat["index"][cat.ismain]
|
|
||||||
parent_ids = parent_ids
|
|
||||||
hid2arrpos = {indx: j for j, indx in enumerate(parent_ids)}
|
|
||||||
# And we pre-allocate the output array for this simulation.
|
|
||||||
dtype = {"names": ["index", "x", "y", "z", "lagpatch"],
|
|
||||||
"formats": [numpy.int32] + [numpy.float32] * 4}
|
|
||||||
# We MPI loop over the individual halos
|
|
||||||
jobs = csiborgtools.fits.split_jobs(parent_ids.size, nproc)[rank]
|
|
||||||
_out_fits = numpy.full(len(jobs), numpy.nan, dtype=dtype)
|
|
||||||
_out_map = {}
|
|
||||||
for i in trange(len(jobs)) if verbose else range(len(jobs)):
|
|
||||||
clid = parent_ids[jobs[i]]
|
|
||||||
_out_fits["index"][i] = clid
|
|
||||||
mmain_indxs = cat["index"][cat["parent"] == clid]
|
|
||||||
|
|
||||||
mmain_mask = numpy.isin(clump_ids, mmain_indxs, assume_unique=True)
|
|
||||||
mmain_particles = part0[mmain_mask, :]
|
|
||||||
# If the number of particles is too small, we skip this halo.
|
|
||||||
if mmain_particles.size < 100:
|
|
||||||
continue
|
|
||||||
|
|
||||||
raddist, cmpos = csiborgtools.match.dist_centmass(mmain_particles)
|
|
||||||
patchsize = csiborgtools.match.dist_percentile(raddist, [99],
|
|
||||||
distmax=0.075)
|
|
||||||
# Write the temporary results
|
|
||||||
_out_fits["x"][i], _out_fits["y"][i], _out_fits["z"][i] = cmpos
|
|
||||||
_out_fits["lagpatch"][i] = patchsize
|
|
||||||
_out_map.update({str(clid): numpy.where(mmain_mask)[0]})
|
|
||||||
|
|
||||||
# Dump the results of this rank to a temporary file.
|
|
||||||
joblib.dump(_out_fits, ftemp("fits", nsim, rank))
|
|
||||||
joblib.dump(_out_map, ftemp("map", nsim, rank))
|
|
||||||
|
|
||||||
del part0, clump_ids,
|
|
||||||
collect()
|
|
||||||
|
|
||||||
# Now we wait for all ranks, then collect the results and save it.
|
|
||||||
comm.Barrier()
|
|
||||||
if rank == 0:
|
|
||||||
print(f"{datetime.now()}: collecting results for {nsim}.", flush=True)
|
|
||||||
out_fits = numpy.full(parent_ids.size, numpy.nan, dtype=dtype)
|
|
||||||
out_map = {}
|
|
||||||
for i in range(nproc):
|
|
||||||
# Merge the map dictionaries
|
|
||||||
out_map = out_map | joblib.load(ftemp("map", nsim, i))
|
|
||||||
# Now merge the structured arrays
|
|
||||||
_out_fits = joblib.load(ftemp("fits", nsim, i))
|
|
||||||
for j in range(_out_fits.size):
|
|
||||||
k = hid2arrpos[_out_fits["index"][j]]
|
|
||||||
for par in dtype["names"]:
|
|
||||||
out_fits[par][k] = _out_fits[par][j]
|
|
||||||
|
|
||||||
remove(ftemp("fits", nsim, i))
|
|
||||||
remove(ftemp("map", nsim, i))
|
|
||||||
|
|
||||||
# Now save it
|
|
||||||
fout_fit = paths.initmatch_path(nsim, "fit")
|
|
||||||
print(f"{datetime.now()}: dumping fits to .. `{fout_fit}`.",
|
|
||||||
flush=True)
|
|
||||||
with open(fout_fit, "wb") as f:
|
|
||||||
numpy.save(f, out_fits)
|
|
||||||
|
|
||||||
fout_map = paths.initmatch_path(nsim, "halomap")
|
|
||||||
print(f"{datetime.now()}: dumping mapping to .. `{fout_map}`.",
|
|
||||||
flush=True)
|
|
||||||
with h5py.File(fout_map, "w") as f:
|
|
||||||
for hid, indxs in out_map.items():
|
|
||||||
f.create_dataset(hid, data=indxs)
|
|
||||||
|
|
||||||
# We force clean up the memory before continuing.
|
|
||||||
del out_map, out_fits
|
|
||||||
collect()
|
|
82
scripts/pre_sortinit.py
Normal file
82
scripts/pre_sortinit.py
Normal file
|
@ -0,0 +1,82 @@
|
||||||
|
# Copyright (C) 2022 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
"""
|
||||||
|
Script to sort the initial snapshot particles according to their final
|
||||||
|
snapshot ordering, which is sorted by the clump IDs.
|
||||||
|
"""
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import h5py
|
||||||
|
from gc import collect
|
||||||
|
import numpy
|
||||||
|
from mpi4py import MPI
|
||||||
|
|
||||||
|
try:
|
||||||
|
import csiborgtools
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
import sys
|
||||||
|
|
||||||
|
sys.path.append("../")
|
||||||
|
import csiborgtools
|
||||||
|
|
||||||
|
|
||||||
|
# Get MPI things
|
||||||
|
comm = MPI.COMM_WORLD
|
||||||
|
rank = comm.Get_rank()
|
||||||
|
nproc = comm.Get_size()
|
||||||
|
verbose = nproc == 1
|
||||||
|
|
||||||
|
# Argument parser
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||||
|
help="IC realisations. If `-1` processes all simulations.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||||
|
partreader = csiborgtools.read.ParticleReader(paths)
|
||||||
|
# NOTE: ID has to be the last column.
|
||||||
|
pars_extract = ["x", "y", "z", "M", "ID"]
|
||||||
|
|
||||||
|
if args.ics is None or args.ics[0] == -1:
|
||||||
|
ics = paths.get_ics(tonew=True)
|
||||||
|
else:
|
||||||
|
ics = args.ics
|
||||||
|
|
||||||
|
# We loop over simulations. Each simulation is then procesed with MPI, rank 0
|
||||||
|
# loads the data and broadcasts it to other ranks.
|
||||||
|
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
||||||
|
for i in jobs:
|
||||||
|
nsim = ics[i]
|
||||||
|
nsnap = max(paths.get_snapshots(nsim))
|
||||||
|
|
||||||
|
print(f"{datetime.now()}: reading and processing simulation {nsim}.",
|
||||||
|
flush=True)
|
||||||
|
# We first load the particle IDs in the final snapshot.
|
||||||
|
pidf = csiborgtools.read.read_h5(paths.particles_path(nsim))
|
||||||
|
pidf = pidf["particle_ids"]
|
||||||
|
# Then we load the particles in the initil snapshot and make sure that
|
||||||
|
# their particle IDs are sorted as in the final snapshot.
|
||||||
|
# Again, because of precision this must be read as structured.
|
||||||
|
part0, pid0 = partreader.read_particle(
|
||||||
|
1, nsim, pars_extract, return_structured=False, verbose=verbose)
|
||||||
|
# First enforce them to already be sorted and then apply reverse
|
||||||
|
# sorting from the final snapshot.
|
||||||
|
part0 = part0[numpy.argsort(pid0)]
|
||||||
|
del pid0
|
||||||
|
collect()
|
||||||
|
part0 = part0[numpy.argsort(numpy.argsort(pidf))]
|
||||||
|
print(f"{datetime.now()}: dumping particles for {nsim}.", flush=True)
|
||||||
|
with h5py.File(paths.initmatch_path(nsim, "particles"), "w") as f:
|
||||||
|
f.create_dataset("particles", data=part0)
|
Loading…
Reference in a new issue