mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-06-08 18:01:11 +00:00
Overlapper improvements (#53)
* Store indices as f32 * Fix init sorting * Organise imports * Rename pathing * Add particle loading * Improve particle reading * Add h5py reader * edit particle path * Update particles loading * update particles loading * Fix particle dumping * Add init fitting * Fix bug due to insufficient precision * Add commnet * Add comment * Add clumps catalogue to halo cat * Add comment * Make sure PIDS never forced to float32 * fix pid reading * fix pid reading * Update matching to work with new arrays * Stop using cubical sub boxes, turn off nshift if no smoothing * Improve caching * Move function definitions * Simplify calculation * Add import * Small updates to the halo * Simplify calculation * Simplify looping calculation * fix tonew * Add initial data * Add skip condition * Add unit conversion * Add loading background in batches * Rename mmain index * Switch overlaps to h5 * Add finite lagpatch check * fix column name * Add verbosity flags * Save halo IDs instead. * Switch back to npz * Delte nbs * Reduce size of the box * Load correct bckg of halos being matched * Remove verbosity * verbosity edits * Change lower thresholds
This commit is contained in:
parent
1c9dacfde5
commit
56e39a8b1d
20 changed files with 864 additions and 3816 deletions
|
@ -15,13 +15,9 @@
|
|||
from warnings import warn
|
||||
|
||||
from csiborgtools.clustering.knn import kNN_CDF # noqa
|
||||
from csiborgtools.clustering.utils import ( # noqa
|
||||
BaseRVS,
|
||||
RVSinbox,
|
||||
RVSinsphere,
|
||||
RVSonsphere,
|
||||
normalised_marks,
|
||||
)
|
||||
from csiborgtools.clustering.utils import (BaseRVS, RVSinbox, # noqa
|
||||
RVSinsphere, RVSonsphere,
|
||||
normalised_marks)
|
||||
|
||||
try:
|
||||
import Corrfunc # noqa
|
||||
|
|
|
@ -12,6 +12,6 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from .halo import Clump, Halo # noqa
|
||||
from .halo import Clump, Halo, dist_centmass # noqa
|
||||
from .haloprofile import NFWPosterior, NFWProfile # noqa
|
||||
from .utils import split_jobs # noqa
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
"""A clump object."""
|
||||
from abc import ABC
|
||||
|
||||
from numba import jit
|
||||
import numpy
|
||||
|
||||
|
||||
|
@ -101,16 +102,21 @@ class BaseStructure(ABC):
|
|||
"""
|
||||
return numpy.vstack([self[p] for p in ("vx", "vy", "vz")]).T
|
||||
|
||||
@property
|
||||
def r(self):
|
||||
"""
|
||||
Calculate the radial separation of the particles from the centre of the
|
||||
object.
|
||||
Radial separation of particles from the centre of the object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
r : 1-dimensional array of shape `(n_particles, )`.
|
||||
"""
|
||||
return numpy.linalg.norm(self.pos, axis=1)
|
||||
return self._get_r(self.pos)
|
||||
|
||||
@staticmethod
|
||||
@jit(nopython=True)
|
||||
def _get_r(pos):
|
||||
return (pos[:, 0]**2 + pos[:, 1]**2 + pos[:, 2]**2)**0.5
|
||||
|
||||
def cmass(self, rmax, rmin):
|
||||
"""
|
||||
|
@ -130,7 +136,7 @@ class BaseStructure(ABC):
|
|||
-------
|
||||
cm : 1-dimensional array of shape `(3, )`
|
||||
"""
|
||||
r = self.r()
|
||||
r = self.r
|
||||
mask = (r >= rmin) & (r <= rmax)
|
||||
return numpy.average(self.pos[mask], axis=0, weights=self["M"][mask])
|
||||
|
||||
|
@ -149,7 +155,7 @@ class BaseStructure(ABC):
|
|||
-------
|
||||
J : 1-dimensional array or shape `(3, )`
|
||||
"""
|
||||
r = self.r()
|
||||
r = self.r
|
||||
mask = (r >= rmin) & (r <= rmax)
|
||||
pos = self.pos[mask] - self.cmass(rmax, rmin)
|
||||
# Velocitities in the object CM frame
|
||||
|
@ -172,17 +178,17 @@ class BaseStructure(ABC):
|
|||
-------
|
||||
enclosed_mass : float
|
||||
"""
|
||||
r = self.r()
|
||||
r = self.r
|
||||
return numpy.sum(self["M"][(r >= rmin) & (r <= rmax)])
|
||||
|
||||
def lambda_bullock(self, radius, npart_min=10):
|
||||
def lambda_bullock(self, radmax, npart_min=10):
|
||||
r"""
|
||||
Bullock spin, see Eq. 5 in [1], in a radius of `radius`, which should
|
||||
define to some overdensity radius.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
radius : float
|
||||
radmax : float
|
||||
Radius in which to calculate the spin.
|
||||
npart_min : int
|
||||
Minimum number of enclosed particles for a radius to be
|
||||
|
@ -198,14 +204,13 @@ class BaseStructure(ABC):
|
|||
Bullock, J. S.; Dekel, A.; Kolatt, T. S.; Kravtsov, A. V.;
|
||||
Klypin, A. A.; Porciani, C.; Primack, J. R.
|
||||
"""
|
||||
mask = self.r() <= radius
|
||||
mask = self.r <= radmax
|
||||
if numpy.sum(mask) < npart_min:
|
||||
return numpy.nan
|
||||
mass = self.enclosed_mass(radius)
|
||||
V = numpy.sqrt(self.box.box_G * mass / radius)
|
||||
out = numpy.linalg.norm(self.angular_momentum(radius))
|
||||
out /= numpy.sqrt(2) * mass * V * radius
|
||||
return out
|
||||
mass = self.enclosed_mass(radmax)
|
||||
circvel = numpy.sqrt(self.box.box_G * mass / radmax)
|
||||
angmom_norm = numpy.linalg.norm(self.angular_momentum(radmax))
|
||||
return angmom_norm / (numpy.sqrt(2) * mass * circvel * radmax)
|
||||
|
||||
def spherical_overdensity_mass(self, delta_mult, npart_min=10,
|
||||
kind="crit"):
|
||||
|
@ -236,18 +241,18 @@ class BaseStructure(ABC):
|
|||
assert kind in ["crit", "matter"]
|
||||
|
||||
# We first sort the particles in an increasing separation
|
||||
rs = self.r()
|
||||
rs = self.r
|
||||
order = numpy.argsort(rs)
|
||||
rs = rs[order]
|
||||
|
||||
cmass = numpy.cumsum(self["M"][order]) # Cumulative mass
|
||||
# We calculate the enclosed volume and indices where it is above target
|
||||
vol = 4 * numpy.pi / 3 * (rs**3 - rs[0] ** 3)
|
||||
vol = 4 * numpy.pi / 3 * rs**3
|
||||
|
||||
target_density = delta_mult * self.box.box_rhoc
|
||||
if kind == "matter":
|
||||
target_density *= self.box.cosmo.Om0
|
||||
with numpy.errstate(divide="ignore"):
|
||||
ks = numpy.where(cmass / vol > target_density)[0]
|
||||
ks = numpy.where(cmass > target_density * vol)[0]
|
||||
if ks.size == 0: # Never above the threshold?
|
||||
return numpy.nan, numpy.nan
|
||||
k = numpy.max(ks)
|
||||
|
@ -257,7 +262,7 @@ class BaseStructure(ABC):
|
|||
|
||||
def __getitem__(self, key):
|
||||
keys = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
||||
if key not in self.keys:
|
||||
if key not in keys:
|
||||
raise RuntimeError(f"Invalid key `{key}`!")
|
||||
return self.particles[:, keys.index(key)]
|
||||
|
||||
|
@ -304,3 +309,31 @@ class Halo(BaseStructure):
|
|||
self.particles = particles
|
||||
self.info = info
|
||||
self.box = box
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Other, supplementary functions #
|
||||
###############################################################################
|
||||
|
||||
@jit(nopython=True)
|
||||
def dist_centmass(clump):
|
||||
"""
|
||||
Calculate the clump (or halo) particles' distance from the centre of mass.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clump : 2-dimensional array of shape (n_particles, 7)
|
||||
Particle array. The first four columns must be `x`, `y`, `z` and `M`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : 1-dimensional array of shape `(n_particles, )`
|
||||
Particle distance from the centre of mass.
|
||||
cm : len-3 list
|
||||
Center of mass coordinates.
|
||||
"""
|
||||
mass = clump[:, 3]
|
||||
x, y, z = clump[:, 0], clump[:, 1], clump[:, 2]
|
||||
cmx, cmy, cmz = [numpy.average(xi, weights=mass) for xi in (x, y, z)]
|
||||
dist = ((x - cmx)**2 + (y - cmy)**2 + (z - cmz)**2)**0.5
|
||||
return dist, [cmx, cmy, cmz]
|
||||
|
|
|
@ -348,7 +348,7 @@ class NFWPosterior(NFWProfile):
|
|||
Best fit NFW central density.
|
||||
"""
|
||||
assert isinstance(clump, Clump)
|
||||
r = clump.r()
|
||||
r = clump.r
|
||||
rmin = numpy.min(r[r > 0]) # First particle that is not at r = 0
|
||||
rmax, mtot = clump.spherical_overdensity_mass(200)
|
||||
mask = (rmin <= r) & (r <= rmax)
|
||||
|
|
|
@ -12,14 +12,8 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from .match import ( # noqa
|
||||
ParticleOverlap,
|
||||
RealisationsMatcher,
|
||||
calculate_overlap,
|
||||
calculate_overlap_indxs,
|
||||
cosine_similarity,
|
||||
dist_centmass,
|
||||
dist_percentile,
|
||||
)
|
||||
from .match import (ParticleOverlap, RealisationsMatcher, # noqa
|
||||
calculate_overlap, calculate_overlap_indxs,
|
||||
cosine_similarity)
|
||||
from .num_density import binned_counts, number_density # noqa
|
||||
from .utils import concatenate_parts # noqa
|
||||
|
|
|
@ -16,12 +16,19 @@
|
|||
Support for matching halos between CSiBORG IC realisations.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from functools import lru_cache
|
||||
from math import ceil
|
||||
|
||||
import numpy
|
||||
from numba import jit
|
||||
from scipy.ndimage import gaussian_filter
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from ..read import load_parent_particles
|
||||
|
||||
BCKG_HALFSIZE = 475
|
||||
BOX_SIZE = 2048
|
||||
|
||||
###############################################################################
|
||||
# Realisations matcher for calculating overlaps #
|
||||
###############################################################################
|
||||
|
@ -105,8 +112,8 @@ class RealisationsMatcher:
|
|||
"""
|
||||
return self._overlapper
|
||||
|
||||
def cross(self, cat0, catx, halos0_archive, halosx_archive, delta_bckg,
|
||||
verbose=True):
|
||||
def cross(self, cat0, catx, particles0, particlesx, clump_map0, clump_mapx,
|
||||
delta_bckg, cache_size=10000, verbose=True):
|
||||
r"""
|
||||
Find all neighbours whose CM separation is less than `nmult` times the
|
||||
sum of their initial Lagrangian patch sizes and calculate their
|
||||
|
@ -119,19 +126,23 @@ class RealisationsMatcher:
|
|||
Halo catalogue of the reference simulation.
|
||||
catx : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
Halo catalogue of the cross simulation.
|
||||
halos0_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
halosx_archive : `NpzFile` object
|
||||
Archive of halos' particles of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
particles0 : 2-dimensional array
|
||||
Array of particles in box units in the reference simulation.
|
||||
The columns must be `x`, `y`, `z` and `M`.
|
||||
particlesx : 2-dimensional array
|
||||
Array of particles in box units in the cross simulation.
|
||||
The columns must be `x`, `y`, `z` and `M`.
|
||||
clump_map0 : 2-dimensional array
|
||||
Clump map of the reference simulation.
|
||||
clump_mapx : 2-dimensional array
|
||||
Clump map of the cross simulation.
|
||||
delta_bckg : 3-dimensional array
|
||||
Summed background density field of the reference and cross
|
||||
simulations calculated with particles assigned to halos at the
|
||||
final snapshot. Assumed to only be sampled in cells
|
||||
:math:`[512, 1536)^3`.
|
||||
cache_size : int, optional
|
||||
Caching size for loading the cross simulation halos.
|
||||
verbose : bool, optional
|
||||
iterator verbosity flag. by default `true`.
|
||||
|
||||
|
@ -149,12 +160,12 @@ class RealisationsMatcher:
|
|||
# in the reference simulation from the cross simulation in the initial
|
||||
# snapshot.
|
||||
if verbose:
|
||||
now = datetime.now()
|
||||
print(f"{now}: querying the KNN.", flush=True)
|
||||
print(f"{datetime.now()}: querying the KNN.", flush=True)
|
||||
match_indxs = radius_neighbours(
|
||||
catx.knn(select_initial=True), cat0.positions(in_initial=True),
|
||||
catx.knn(in_initial=True), cat0.position(in_initial=True),
|
||||
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
||||
nmult=self.nmult, enforce_int32=True, verbose=verbose)
|
||||
|
||||
# We next remove neighbours whose mass is too large/small.
|
||||
if self.dlogmass is not None:
|
||||
for i, indx in enumerate(match_indxs):
|
||||
|
@ -163,12 +174,18 @@ class RealisationsMatcher:
|
|||
aratio = numpy.abs(numpy.log10(catx[p][indx] / cat0[p][i]))
|
||||
match_indxs[i] = match_indxs[i][aratio < self.dlogmass]
|
||||
|
||||
# We will make a dictionary to keep in memory the halos' particles from
|
||||
# the cross simulations so that they are not loaded in several times
|
||||
# and we only convert their positions to cells once. Possibly make an
|
||||
# option to not do this to lower memory requirements?
|
||||
cross_halos = {}
|
||||
cross_lims = {}
|
||||
clid2map0 = {clid: i for i, clid in enumerate(clump_map0[:, 0])}
|
||||
clid2mapx = {clid: i for i, clid in enumerate(clump_mapx[:, 0])}
|
||||
|
||||
# We will cache the halos from the cross simulation to speed up the I/O
|
||||
@lru_cache(maxsize=cache_size)
|
||||
def load_cached_halox(hid):
|
||||
return load_processed_halo(hid, particlesx, clump_mapx, clid2mapx,
|
||||
catx.clumps_cat, nshift=0,
|
||||
ncells=BOX_SIZE)
|
||||
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: calculating overlaps.", flush=True)
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||
indxs = cat0["index"]
|
||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
||||
|
@ -178,36 +195,18 @@ class RealisationsMatcher:
|
|||
continue
|
||||
# Next, we find this halo's particles, total mass, minimum and
|
||||
# maximum cells and convert positions to cells.
|
||||
halo0 = halos0_archive[str(k0)]
|
||||
mass0 = numpy.sum(halo0["M"])
|
||||
mins0, maxs0 = get_halolims(halo0,
|
||||
ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift)
|
||||
for p in ("x", "y", "z"):
|
||||
halo0[p] = self.overlapper.pos2cell(halo0[p])
|
||||
pos0, mass0, totmass0, mins0, maxs0 = load_processed_halo(
|
||||
k0, particles0, clump_map0, clid2map0, cat0.clumps_cat,
|
||||
nshift=0, ncells=BOX_SIZE)
|
||||
|
||||
# We now loop over matches of this halo and calculate their
|
||||
# overlap, storing them in `_cross`.
|
||||
_cross = numpy.full(matches.size, numpy.nan, dtype=numpy.float32)
|
||||
for j, kf in enumerate(catx["index"][matches]):
|
||||
# Attempt to load this cross halo from memory, if it fails get
|
||||
# it from from the halo archive (and similarly for the limits)
|
||||
# and convert the particle positions to cells.
|
||||
try:
|
||||
halox = cross_halos[kf]
|
||||
minsx, maxsx = cross_lims[kf]
|
||||
except KeyError:
|
||||
halox = halosx_archive[str(kf)]
|
||||
minsx, maxsx = get_halolims(
|
||||
halox, ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift)
|
||||
for p in ("x", "y", "z"):
|
||||
halox[p] = self.overlapper.pos2cell(halox[p])
|
||||
cross_halos[kf] = halox
|
||||
cross_lims[kf] = (minsx, maxsx)
|
||||
massx = numpy.sum(halox["M"])
|
||||
_cross[j] = self.overlapper(halo0, halox, delta_bckg, mins0,
|
||||
maxs0, minsx, maxsx, mass1=mass0,
|
||||
mass2=massx)
|
||||
for j, kx in enumerate(catx["index"][matches]):
|
||||
posx, massx, totmassx, minsx, maxsx = load_cached_halox(kx)
|
||||
_cross[j] = self.overlapper(
|
||||
pos0, posx, mass0, massx, delta_bckg, mins0, maxs0,
|
||||
minsx, maxsx, totmass1=totmass0, totmass2=totmassx)
|
||||
cross[i] = _cross
|
||||
|
||||
# We remove all matches that have zero overlap to save space.
|
||||
|
@ -222,8 +221,9 @@ class RealisationsMatcher:
|
|||
cross = numpy.asanyarray(cross, dtype=object)
|
||||
return match_indxs, cross
|
||||
|
||||
def smoothed_cross(self, cat0, catx, halos0_archive, halosx_archive,
|
||||
delta_bckg, match_indxs, smooth_kwargs, verbose=True):
|
||||
def smoothed_cross(self, cat0, catx, particles0, particlesx, clump_map0,
|
||||
clump_mapx, delta_bckg, match_indxs, smooth_kwargs,
|
||||
cache_size=10000, verbose=True):
|
||||
r"""
|
||||
Calculate the smoothed overlaps for pair previously identified via
|
||||
`self.cross(...)` to have a non-zero overlap.
|
||||
|
@ -234,27 +234,27 @@ class RealisationsMatcher:
|
|||
Halo catalogue of the reference simulation.
|
||||
catx : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Halo catalogue of the cross simulation.
|
||||
halos0_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
halosx_archive : `NpzFile` object
|
||||
Archive of halos' particles of the cross simulation, keys must
|
||||
include `x`, `y`, `z` and `M`. The positions must already be
|
||||
converted to cell numbers.
|
||||
particles0 : 2-dimensional array
|
||||
Array of particles in box units in the reference simulation.
|
||||
The columns must be `x`, `y`, `z` and `M`.
|
||||
particlesx : 2-dimensional array
|
||||
Array of particles in box units in the cross simulation.
|
||||
The columns must be `x`, `y`, `z` and `M`.
|
||||
clump_map0 : 2-dimensional array
|
||||
Clump map of the reference simulation.
|
||||
clump_mapx : 2-dimensional array
|
||||
Clump map of the cross simulation.
|
||||
delta_bckg : 3-dimensional array
|
||||
Smoothed summed background density field of the reference and cross
|
||||
simulations calculated with particles assigned to halos at the
|
||||
final snapshot. Assumed to only be sampled in cells
|
||||
:math:`[512, 1536)^3`.
|
||||
ref_indxs : 1-dimensional array
|
||||
Halo IDs in the reference catalogue.
|
||||
cross_indxs : 1-dimensional array
|
||||
Halo IDs in the cross catalogue.
|
||||
match_indxs : 1-dimensional array of arrays
|
||||
Indices of halo counterparts in the cross catalogue.
|
||||
smooth_kwargs : kwargs
|
||||
Kwargs to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
||||
cache_size : int, optional
|
||||
Caching size for loading the cross simulation halos.
|
||||
verbose : bool, optional
|
||||
Iterator verbosity flag. By default `True`.
|
||||
|
||||
|
@ -262,37 +262,33 @@ class RealisationsMatcher:
|
|||
-------
|
||||
overlaps : 1-dimensional array of arrays
|
||||
"""
|
||||
nshift = read_nshift(smooth_kwargs)
|
||||
clid2map0 = {clid: i for i, clid in enumerate(clump_map0[:, 0])}
|
||||
clid2mapx = {clid: i for i, clid in enumerate(clump_mapx[:, 0])}
|
||||
|
||||
cross_halos = {}
|
||||
cross_lims = {}
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||
@lru_cache(maxsize=cache_size)
|
||||
def load_cached_halox(hid):
|
||||
return load_processed_halo(hid, particlesx, clump_mapx, clid2mapx,
|
||||
catx.clumps_cat, nshift=nshift,
|
||||
ncells=BOX_SIZE)
|
||||
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: calculating smoothed overlaps.",
|
||||
flush=True)
|
||||
indxs = cat0["index"]
|
||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
||||
halo0 = halos0_archive[str(k0)]
|
||||
mins0, maxs0 = get_halolims(halo0,
|
||||
ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift)
|
||||
pos0, mass0, __, mins0, maxs0 = load_processed_halo(
|
||||
k0, particles0, clump_map0, clid2map0, cat0.clumps_cat,
|
||||
nshift=nshift, ncells=BOX_SIZE)
|
||||
|
||||
# Now loop over the matches and calculate the smoothed overlap.
|
||||
_cross = numpy.full(match_indxs[i].size, numpy.nan, numpy.float32)
|
||||
for j, kf in enumerate(catx["index"][match_indxs[i]]):
|
||||
# Attempt to load this cross halo from memory, if it fails get
|
||||
# it from from the halo archive (and similarly for the limits).
|
||||
try:
|
||||
halox = cross_halos[kf]
|
||||
minsx, maxsx = cross_lims[kf]
|
||||
except KeyError:
|
||||
halox = halosx_archive[str(kf)]
|
||||
minsx, maxsx = get_halolims(
|
||||
halox, ncells=self.overlapper.inv_clength,
|
||||
nshift=self.overlapper.nshift)
|
||||
cross_halos[kf] = halox
|
||||
cross_lims[kf] = (minsx, maxsx)
|
||||
|
||||
_cross[j] = self.overlapper(halo0, halox, delta_bckg, mins0,
|
||||
maxs0, minsx, maxsx,
|
||||
smooth_kwargs=smooth_kwargs)
|
||||
for j, kx in enumerate(catx["index"][match_indxs[i]]):
|
||||
posx, massx, __, minsx, maxsx = load_cached_halox(kx)
|
||||
_cross[j] = self.overlapper(pos0, posx, mass0, massx,
|
||||
delta_bckg, mins0, maxs0, minsx,
|
||||
maxsx, smooth_kwargs=smooth_kwargs)
|
||||
cross[i] = _cross
|
||||
|
||||
return numpy.asanyarray(cross, dtype=object)
|
||||
|
@ -341,57 +337,37 @@ class ParticleOverlap:
|
|||
Gaussian smoothing.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# Inverse cell length in box units. By default :math:`2^11`, which
|
||||
# matches the initial RAMSES grid resolution.
|
||||
self.inv_clength = 2**11
|
||||
self.nshift = 5 # Hardcode this too to force consistency
|
||||
self._clength = 1 / self.inv_clength
|
||||
|
||||
def pos2cell(self, pos):
|
||||
def make_bckg_delta(self, particles, clump_map, clid2map, halo_cat,
|
||||
delta=None, verbose=False):
|
||||
"""
|
||||
Convert position to cell number. If `pos` is in
|
||||
`numpy.typecodes["AllInteger"]` assumes it to already be the cell
|
||||
number.
|
||||
Calculate a NGP density field of particles belonging to halos of a
|
||||
halo catalogue `halo_cat`. Particles are only counted within the
|
||||
high-resolution region of the simulation. Smoothing must be applied
|
||||
separately.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 1-dimensional array
|
||||
Array of positions along an axis in the box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cells : 1-dimensional array
|
||||
"""
|
||||
# Check whether this is already the cell
|
||||
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
||||
return pos
|
||||
return numpy.floor(pos * self.inv_clength).astype(numpy.int32)
|
||||
|
||||
def make_bckg_delta(self, halo_archive, delta=None, verbose=False):
|
||||
"""
|
||||
Calculate a NGP density field of particles belonging to halos within
|
||||
the central :math:`1/2^3` high-resolution region of the simulation.
|
||||
Smoothing must be applied separately.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
halo_archive : `NpzFile` object
|
||||
Archive of halos' particles of the reference simulation, keys must
|
||||
include `x`, `y`, `z` and `M`.
|
||||
particles : 2-dimensional array
|
||||
Array of particles.
|
||||
clump_map : 2-dimensional array
|
||||
Array containing start and end indices in the particle array
|
||||
corresponding to each clump.
|
||||
clid2map : dict
|
||||
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||
halo_cat: :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
Halo catalogue.
|
||||
delta : 3-dimensional array, optional
|
||||
Array to store the density field in. If `None` a new array is
|
||||
created.
|
||||
verbose : bool, optional
|
||||
Verbosity flag for loading the files.
|
||||
Verbosity flag for loading the halos' particles.
|
||||
|
||||
Returns
|
||||
-------
|
||||
delta : 3-dimensional array
|
||||
"""
|
||||
# We obtain the minimum/maximum cell IDs and number of cells
|
||||
cellmin = self.inv_clength // 4 # The minimum cell ID
|
||||
cellmax = 3 * self.inv_clength // 4 # The maximum cell ID
|
||||
cellmin = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||
cellmax = BOX_SIZE // 2 + BCKG_HALFSIZE
|
||||
ncells = cellmax - cellmin
|
||||
# We then pre-allocate the density field/check it is of the right shape
|
||||
if delta is None:
|
||||
|
@ -399,28 +375,25 @@ class ParticleOverlap:
|
|||
else:
|
||||
assert ((delta.shape == (ncells,) * 3)
|
||||
& (delta.dtype == numpy.float32))
|
||||
from tqdm import tqdm
|
||||
|
||||
# We now loop one-by-one over the halos fill the density field.
|
||||
files = halo_archive.files
|
||||
for file in tqdm(files) if verbose else files:
|
||||
parts = halo_archive[file]
|
||||
cells = [self.pos2cell(parts[p]) for p in ("x", "y", "z")]
|
||||
mass = parts["M"]
|
||||
clumps_cat = halo_cat.clumps_cat
|
||||
for hid in tqdm(halo_cat["index"]) if verbose else halo_cat["index"]:
|
||||
pos = load_parent_particles(hid, particles, clump_map, clid2map,
|
||||
clumps_cat)
|
||||
if pos is None:
|
||||
continue
|
||||
|
||||
pos, mass = pos[:, :3], pos[:, 3]
|
||||
pos = pos2cell(pos, BOX_SIZE)
|
||||
# We mask out particles outside the cubical high-resolution region
|
||||
mask = ((cellmin <= cells[0])
|
||||
& (cells[0] < cellmax)
|
||||
& (cellmin <= cells[1])
|
||||
& (cells[1] < cellmax)
|
||||
& (cellmin <= cells[2])
|
||||
& (cells[2] < cellmax))
|
||||
cells = [c[mask] for c in cells]
|
||||
mass = mass[mask]
|
||||
fill_delta(delta, *cells, *(cellmin,) * 3, mass)
|
||||
|
||||
mask = numpy.all((cellmin <= pos) & (pos < cellmax), axis=1)
|
||||
pos = pos[mask]
|
||||
fill_delta(delta, pos[:, 0], pos[:, 1], pos[:, 2],
|
||||
*(cellmin,) * 3, mass[mask])
|
||||
return delta
|
||||
|
||||
def make_delta(self, clump, mins=None, maxs=None, subbox=False,
|
||||
def make_delta(self, pos, mass, mins=None, maxs=None, subbox=False,
|
||||
smooth_kwargs=None):
|
||||
"""
|
||||
Calculate a NGP density field of a halo on a cubic grid. Optionally can
|
||||
|
@ -428,8 +401,10 @@ class ParticleOverlap:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
clump : structurered arrays
|
||||
Clump structured array, keys must include `x`, `y`, `z` and `M`.
|
||||
pos : 2-dimensional array
|
||||
Halo particle position array.
|
||||
mass : 1-dimensional array
|
||||
Halo particle mass array.
|
||||
mins, maxs : 1-dimensional arrays of shape `(3,)`
|
||||
Minimun and maximum cell numbers along each dimension.
|
||||
subbox : bool, optional
|
||||
|
@ -443,50 +418,45 @@ class ParticleOverlap:
|
|||
-------
|
||||
delta : 3-dimensional array
|
||||
"""
|
||||
cells = [self.pos2cell(clump[p]) for p in ("x", "y", "z")]
|
||||
|
||||
nshift = read_nshift(smooth_kwargs)
|
||||
cells = self.pos2cell(pos)
|
||||
# Check that minima and maxima are integers
|
||||
if not (mins is None and maxs is None):
|
||||
assert mins.dtype.char in numpy.typecodes["AllInteger"]
|
||||
assert maxs.dtype.char in numpy.typecodes["AllInteger"]
|
||||
|
||||
if subbox:
|
||||
# Minimum xcell, ycell and zcell of this clump
|
||||
if mins is None or maxs is None:
|
||||
mins = numpy.asanyarray(
|
||||
[max(numpy.min(cell) - self.nshift, 0) for cell in cells]
|
||||
)
|
||||
maxs = numpy.asanyarray(
|
||||
[
|
||||
min(numpy.max(cell) + self.nshift, self.inv_clength)
|
||||
for cell in cells
|
||||
]
|
||||
)
|
||||
mins, maxs = get_halolims(cells, BOX_SIZE, nshift)
|
||||
|
||||
ncells = numpy.max(maxs - mins) + 1 # To get the number of cells
|
||||
ncells = maxs - mins + 1 # To get the number of cells
|
||||
else:
|
||||
mins = [0, 0, 0]
|
||||
ncells = self.inv_clength
|
||||
ncells = BOX_SIZE
|
||||
|
||||
# Preallocate and fill the array
|
||||
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
fill_delta(delta, *cells, *mins, clump["M"])
|
||||
|
||||
fill_delta(delta, cells[:, 0], cells[:, 1], cells[:, 2], *mins, mass)
|
||||
if smooth_kwargs is not None:
|
||||
gaussian_filter(delta, output=delta, **smooth_kwargs)
|
||||
return delta
|
||||
|
||||
def make_deltas(self, clump1, clump2, mins1=None, maxs1=None, mins2=None,
|
||||
maxs2=None, smooth_kwargs=None):
|
||||
def make_deltas(self, pos1, pos2, mass1, mass2, mins1=None, maxs1=None,
|
||||
mins2=None, maxs2=None, smooth_kwargs=None):
|
||||
"""
|
||||
Calculate a NGP density fields of two halos on a grid that encloses
|
||||
them both. Optionally can be smoothed with a Gaussian kernel.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clump1, clump2 : structurered arrays
|
||||
Particle structured array of the two clumps. Keys must include `x`,
|
||||
`y`, `z` and `M`.
|
||||
pos1 : 2-dimensional array
|
||||
Particle positions of the first halo.
|
||||
pos2 : 2-dimensional array
|
||||
Particle positions of the second halo.
|
||||
mass1 : 1-dimensional array
|
||||
Particle masses of the first halo.
|
||||
mass2 : 1-dimensional array
|
||||
Particle masses of the second halo.
|
||||
mins1, maxs1 : 1-dimensional arrays of shape `(3,)`
|
||||
Minimun and maximum cell numbers along each dimension of `clump1`.
|
||||
Optional.
|
||||
|
@ -507,51 +477,51 @@ class ParticleOverlap:
|
|||
Indices where the lower mass clump has a non-zero density.
|
||||
Calculated only if no smoothing is applied, otherwise `None`.
|
||||
"""
|
||||
xc1, yc1, zc1 = (self.pos2cell(clump1[p]) for p in ("x", "y", "z"))
|
||||
xc2, yc2, zc2 = (self.pos2cell(clump2[p]) for p in ("x", "y", "z"))
|
||||
nshift = read_nshift(smooth_kwargs)
|
||||
pos1 = pos2cell(pos1, BOX_SIZE)
|
||||
pos2 = pos2cell(pos2, BOX_SIZE)
|
||||
xc1, yc1, zc1 = [pos1[:, i] for i in range(3)]
|
||||
xc2, yc2, zc2 = [pos2[:, i] for i in range(3)]
|
||||
|
||||
if any(obj is None for obj in (mins1, maxs1, mins2, maxs2)):
|
||||
# Minimum cell number of the two halos along each dimension
|
||||
xmin = min(numpy.min(xc1), numpy.min(xc2)) - self.nshift
|
||||
ymin = min(numpy.min(yc1), numpy.min(yc2)) - self.nshift
|
||||
zmin = min(numpy.min(zc1), numpy.min(zc2)) - self.nshift
|
||||
xmin = min(numpy.min(xc1), numpy.min(xc2)) - nshift
|
||||
ymin = min(numpy.min(yc1), numpy.min(yc2)) - nshift
|
||||
zmin = min(numpy.min(zc1), numpy.min(zc2)) - nshift
|
||||
# Make sure shifting does not go beyond boundaries
|
||||
xmin, ymin, zmin = [max(px, 0) for px in (xmin, ymin, zmin)]
|
||||
|
||||
# Maximum cell number of the two halos along each dimension
|
||||
xmax = max(numpy.max(xc1), numpy.max(xc2)) + self.nshift
|
||||
ymax = max(numpy.max(yc1), numpy.max(yc2)) + self.nshift
|
||||
zmax = max(numpy.max(zc1), numpy.max(zc2)) + self.nshift
|
||||
xmax = max(numpy.max(xc1), numpy.max(xc2)) + nshift
|
||||
ymax = max(numpy.max(yc1), numpy.max(yc2)) + nshift
|
||||
zmax = max(numpy.max(zc1), numpy.max(zc2)) + nshift
|
||||
# Make sure shifting does not go beyond boundaries
|
||||
xmax, ymax, zmax = [
|
||||
min(px, self.inv_clength - 1) for px in (xmax, ymax, zmax)
|
||||
]
|
||||
xmax, ymax, zmax = [min(px, BOX_SIZE - 1)
|
||||
for px in (xmax, ymax, zmax)]
|
||||
else:
|
||||
xmin, ymin, zmin = [min(mins1[i], mins2[i]) for i in range(3)]
|
||||
xmax, ymax, zmax = [max(maxs1[i], maxs2[i]) for i in range(3)]
|
||||
|
||||
cellmins = (xmin, ymin, zmin) # Cell minima
|
||||
ncells = max(xmax - xmin, ymax - ymin, zmax - zmin) + 1 # Num cells
|
||||
ncells = xmax - xmin + 1, ymax - ymin + 1, zmax - zmin + 1 # Num cells
|
||||
|
||||
# Preallocate and fill the arrays
|
||||
delta1 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
delta2 = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
delta1 = numpy.zeros(ncells, dtype=numpy.float32)
|
||||
delta2 = numpy.zeros(ncells, dtype=numpy.float32)
|
||||
|
||||
# If no smoothing figure out the nonzero indices of the smaller clump
|
||||
if smooth_kwargs is None:
|
||||
if clump1.size > clump2.size:
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
||||
nonzero = fill_delta_indxs(
|
||||
delta2, xc2, yc2, zc2, *cellmins, clump2["M"]
|
||||
)
|
||||
if pos1.shape[0] > pos2.shape[0]:
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, mass1)
|
||||
nonzero = fill_delta_indxs(delta2, xc2, yc2, zc2, *cellmins,
|
||||
mass2)
|
||||
else:
|
||||
nonzero = fill_delta_indxs(
|
||||
delta1, xc1, yc1, zc1, *cellmins, clump1["M"]
|
||||
)
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
||||
nonzero = fill_delta_indxs(delta1, xc1, yc1, zc1, *cellmins,
|
||||
mass1)
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, mass2)
|
||||
else:
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, clump1["M"])
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, clump2["M"])
|
||||
fill_delta(delta1, xc1, yc1, zc1, *cellmins, mass1)
|
||||
fill_delta(delta2, xc2, yc2, zc2, *cellmins, mass2)
|
||||
nonzero = None
|
||||
|
||||
if smooth_kwargs is not None:
|
||||
|
@ -559,9 +529,9 @@ class ParticleOverlap:
|
|||
gaussian_filter(delta2, output=delta2, **smooth_kwargs)
|
||||
return delta1, delta2, cellmins, nonzero
|
||||
|
||||
def __call__(self, clump1, clump2, delta_bckg, mins1=None, maxs1=None,
|
||||
mins2=None, maxs2=None, mass1=None, mass2=None,
|
||||
smooth_kwargs=None):
|
||||
def __call__(self, pos1, pos2, mass1, mass2, delta_bckg,
|
||||
mins1=None, maxs1=None, mins2=None, maxs2=None,
|
||||
totmass1=None, totmass2=None, smooth_kwargs=None):
|
||||
"""
|
||||
Calculate overlap between `clump1` and `clump2`. See
|
||||
`calculate_overlap(...)` for further information. Be careful so that
|
||||
|
@ -572,9 +542,14 @@ class ParticleOverlap:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
clump1, clump2 : structurered arrays
|
||||
Structured arrays containing the particles of a given clump. Keys
|
||||
must include `x`, `y`, `z` and `M`.
|
||||
pos1 : 2-dimensional array
|
||||
Particle positions of the first halo.
|
||||
pos2 : 2-dimensional array
|
||||
Particle positions of the second halo.
|
||||
mass1 : 1-dimensional array
|
||||
Particle masses of the first halo.
|
||||
mass2 : 1-dimensional array
|
||||
Particle masses of the second halo.
|
||||
cellmins : len-3 tuple
|
||||
Tuple of left-most cell ID in the full box.
|
||||
delta_bckg : 3-dimensional array
|
||||
|
@ -588,7 +563,7 @@ class ParticleOverlap:
|
|||
mins2, maxs2 : 1-dimensional arrays of shape `(3,)`
|
||||
Minimum and maximum cell numbers along each dimension of `clump2`,
|
||||
optional.
|
||||
mass1, mass2 : floats, optional
|
||||
totmass1, totmass2 : floats, optional
|
||||
Total mass of `clump1` and `clump2`, respectively. Must be provided
|
||||
if `loop_nonzero` is `True`.
|
||||
smooth_kwargs : kwargs, optional
|
||||
|
@ -600,16 +575,16 @@ class ParticleOverlap:
|
|||
overlap : float
|
||||
"""
|
||||
delta1, delta2, cellmins, nonzero = self.make_deltas(
|
||||
clump1, clump2, mins1, maxs1, mins2, maxs2,
|
||||
pos1, pos2, mass1, mass2, mins1, maxs1, mins2, maxs2,
|
||||
smooth_kwargs=smooth_kwargs)
|
||||
|
||||
if smooth_kwargs is not None:
|
||||
return calculate_overlap(delta1, delta2, cellmins, delta_bckg)
|
||||
# Calculate masses not given
|
||||
mass1 = numpy.sum(clump1["M"]) if mass1 is None else mass1
|
||||
mass2 = numpy.sum(clump2["M"]) if mass2 is None else mass2
|
||||
totmass1 = numpy.sum(mass1) if totmass1 is None else totmass1
|
||||
totmass2 = numpy.sum(mass2) if totmass2 is None else totmass2
|
||||
return calculate_overlap_indxs(
|
||||
delta1, delta2, cellmins, delta_bckg, nonzero, mass1, mass2)
|
||||
delta1, delta2, cellmins, delta_bckg, nonzero, totmass1, totmass2)
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -617,6 +592,49 @@ class ParticleOverlap:
|
|||
###############################################################################
|
||||
|
||||
|
||||
def pos2cell(pos, ncells):
|
||||
"""
|
||||
Convert position to cell number. If `pos` is in
|
||||
`numpy.typecodes["AllInteger"]` assumes it to already be the cell
|
||||
number.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 1-dimensional array
|
||||
Array of positions along an axis in the box.
|
||||
ncells : int
|
||||
Number of cells along the axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cells : 1-dimensional array
|
||||
"""
|
||||
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
||||
return pos
|
||||
return numpy.floor(pos * ncells).astype(numpy.int32)
|
||||
|
||||
|
||||
def read_nshift(smooth_kwargs):
|
||||
"""
|
||||
Read off the number of cells to pad the density field if smoothing is
|
||||
applied. Defaults to the ceiling of twice of the smoothing scale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
smooth_kwargs : kwargs, optional
|
||||
Kwargs to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
||||
If `None` no smoothing is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nshift : int
|
||||
"""
|
||||
if smooth_kwargs is None:
|
||||
return 0
|
||||
else:
|
||||
return ceil(2 * smooth_kwargs["sigma"])
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def fill_delta(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
||||
"""
|
||||
|
@ -679,15 +697,14 @@ def fill_delta_indxs(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
|||
return cells[:count_nonzero, :] # Cutoff unassigned places
|
||||
|
||||
|
||||
def get_halolims(halo, ncells, nshift=None):
|
||||
def get_halolims(pos, ncells, nshift=None):
|
||||
"""
|
||||
Get the lower and upper limit of a halo's positions or cell numbers.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
halo : structured array
|
||||
Structured array containing the particles of a given halo. Keys must
|
||||
`x`, `y`, `z`.
|
||||
pos : 2-dimensional array
|
||||
Halo particle array. Columns must be `x`, `y`, `z`.
|
||||
ncells : int
|
||||
Number of grid cells of the box along a single dimension.
|
||||
nshift : int, optional
|
||||
|
@ -699,17 +716,16 @@ def get_halolims(halo, ncells, nshift=None):
|
|||
Minimum and maximum along each axis.
|
||||
"""
|
||||
# Check that in case of `nshift` we have integer positions.
|
||||
dtype = halo["x"].dtype
|
||||
dtype = pos.dtype
|
||||
if nshift is not None and dtype.char not in numpy.typecodes["AllInteger"]:
|
||||
raise TypeError("`nshift` supported only positions are cells.")
|
||||
nshift = 0 if nshift is None else nshift # To simplify code below
|
||||
|
||||
mins = numpy.full(3, numpy.nan, dtype=dtype)
|
||||
maxs = numpy.full(3, numpy.nan, dtype=dtype)
|
||||
|
||||
for i, p in enumerate(["x", "y", "z"]):
|
||||
mins[i] = max(numpy.min(halo[p]) - nshift, 0)
|
||||
maxs[i] = min(numpy.max(halo[p]) + nshift, ncells - 1)
|
||||
for i in range(3):
|
||||
mins[i] = max(numpy.min(pos[:, i]) - nshift, 0)
|
||||
maxs[i] = min(numpy.max(pos[:, i]) + nshift, ncells - 1)
|
||||
|
||||
return mins, maxs
|
||||
|
||||
|
@ -741,8 +757,8 @@ def calculate_overlap(delta1, delta2, cellmins, delta_bckg):
|
|||
totmass = 0.0 # Total mass of clump 1 and clump 2
|
||||
intersect = 0.0 # Weighted intersecting mass
|
||||
i0, j0, k0 = cellmins # Unpack things
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_size = 1024
|
||||
bckg_size = 2 * BCKG_HALFSIZE
|
||||
bckg_offset = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||
imax, jmax, kmax = delta1.shape
|
||||
|
||||
for i in range(imax):
|
||||
|
@ -798,8 +814,8 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
|||
"""
|
||||
intersect = 0.0 # Weighted intersecting mass
|
||||
i0, j0, k0 = cellmins # Unpack cell minimas
|
||||
bckg_offset = 512 # Offset of the background density field
|
||||
bckg_size = 1024 # Size of the background density field array
|
||||
bckg_size = 2 * BCKG_HALFSIZE
|
||||
bckg_offset = BOX_SIZE // 2 - BCKG_HALFSIZE
|
||||
|
||||
for n in range(nonzero.shape[0]):
|
||||
i, j, k = nonzero[n, :]
|
||||
|
@ -821,47 +837,51 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta_bckg, nonzero,
|
|||
return intersect / (mass1 + mass2 - intersect)
|
||||
|
||||
|
||||
def dist_centmass(clump):
|
||||
def load_processed_halo(hid, particles, clump_map, clid2map, clumps_cat,
|
||||
ncells, nshift):
|
||||
"""
|
||||
Calculate the clump (or halo) particles' distance from the centre of mass.
|
||||
Load a processed halo from the `.h5` file. This is to be wrapped by a
|
||||
cacher.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clump : 2-dimensional array of shape (n_particles, 7)
|
||||
Particle array. The first four columns must be `x`, `y`, `z` and `M`.
|
||||
hid : int
|
||||
Halo ID.
|
||||
particles : 2-dimensional array
|
||||
Array of particles in box units. The columns must be `x`, `y`, `z`
|
||||
and `M`.
|
||||
clump_map : 2-dimensional array
|
||||
Array containing start and end indices in the particle array
|
||||
corresponding to each clump.
|
||||
clid2map : dict
|
||||
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Clumps catalogue.
|
||||
ncells : int
|
||||
Number of cells in the original density field. Typically 2048.
|
||||
nshift : int
|
||||
Number of cells to pad the density field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : 1-dimensional array of shape `(n_particles, )`
|
||||
Particle distance from the centre of mass.
|
||||
cm : 1-dimensional array of shape `(3,)`
|
||||
Center of mass coordinates.
|
||||
pos : 2-dimensional array
|
||||
Array of cell particle positions.
|
||||
mass : 1-dimensional array
|
||||
Array of particle masses.
|
||||
totmass : float
|
||||
Total mass of the halo.
|
||||
mins : len-3 tuple
|
||||
Minimum cell indices of the halo.
|
||||
maxs : len-3 tuple
|
||||
Maximum cell indices of the halo.
|
||||
"""
|
||||
# CM along each dimension
|
||||
cm = numpy.average(clump[:, :3], weights=clump[:, 3], axis=0)
|
||||
return numpy.linalg.norm(clump[:, :3] - cm, axis=1), cm
|
||||
|
||||
|
||||
def dist_percentile(dist, qs, distmax=0.075):
|
||||
"""
|
||||
Calculate q-th percentiles of `dist`, with an upper limit of `distmax`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dist : 1-dimensional array
|
||||
Array of distances.
|
||||
qs : 1-dimensional array
|
||||
Percentiles to compute.
|
||||
distmax : float, optional
|
||||
The maximum distance. By default 0.075.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : 1-dimensional array
|
||||
"""
|
||||
x = numpy.percentile(dist, qs)
|
||||
x[x > distmax] = distmax # Enforce the upper limit
|
||||
return x
|
||||
pos = load_parent_particles(hid, particles, clump_map, clid2map,
|
||||
clumps_cat)
|
||||
pos, mass = pos[:, :3], pos[:, 3]
|
||||
pos = pos2cell(pos, ncells)
|
||||
totmass = numpy.sum(mass)
|
||||
mins, maxs = get_halolims(pos, ncells=ncells, nshift=nshift)
|
||||
return pos, mass, totmass, mins, maxs
|
||||
|
||||
|
||||
def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.0,
|
||||
|
|
|
@ -15,16 +15,14 @@
|
|||
from .box_units import BoxUnits # noqa
|
||||
from .halo_cat import ClumpsCatalogue, HaloCatalogue # noqa
|
||||
from .knn_summary import kNNCDFReader # noqa
|
||||
from .obs import ( # noqa
|
||||
SDSS,
|
||||
MCXCClusters,
|
||||
PlanckClusters,
|
||||
TwoMPPGalaxies,
|
||||
TwoMPPGroups,
|
||||
)
|
||||
from .overlap_summary import NPairsOverlap, PairOverlap, binned_resample_mean # noqa
|
||||
from .obs import (SDSS, MCXCClusters, PlanckClusters, TwoMPPGalaxies, # noqa
|
||||
TwoMPPGroups)
|
||||
from .overlap_summary import (NPairsOverlap, PairOverlap, # noqa
|
||||
binned_resample_mean)
|
||||
from .paths import CSiBORGPaths # noqa
|
||||
from .pk_summary import PKReader # noqa
|
||||
from .readsim import MmainReader, ParticleReader, halfwidth_select, read_initcm # noqa
|
||||
from .readsim import (MmainReader, ParticleReader, halfwidth_select, # noqa
|
||||
load_clump_particles, load_parent_particles, read_initcm)
|
||||
from .tpcf_summary import TPCFReader # noqa
|
||||
from .utils import cartesian_to_radec, cols_to_structured, radec_to_cartesian # noqa
|
||||
from .utils import (cartesian_to_radec, cols_to_structured, # noqa
|
||||
radec_to_cartesian, read_h5)
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""CSiBORG halo catalogue."""
|
||||
"""CSiBORG halo and clumps catalogues."""
|
||||
from abc import ABC
|
||||
|
||||
import numpy
|
||||
|
@ -177,7 +177,7 @@ class BaseCatalogue(ABC):
|
|||
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
|
||||
"""
|
||||
knn = NearestNeighbors()
|
||||
return knn.fit(self.positions(in_initial))
|
||||
return knn.fit(self.position(in_initial))
|
||||
|
||||
def radius_neigbours(self, X, radius, in_initial):
|
||||
r"""
|
||||
|
@ -368,6 +368,8 @@ class HaloCatalogue(BaseCatalogue):
|
|||
minmass : len-2 tuple
|
||||
Minimum mass. The first element is the catalogue key and the second is
|
||||
the value.
|
||||
with_lagpatch : bool, optional
|
||||
Whether to only load halos with a resolved Lagrangian patch.
|
||||
load_fitted : bool, optional
|
||||
Whether to load fitted quantities.
|
||||
load_initial : bool, optional
|
||||
|
@ -378,22 +380,39 @@ class HaloCatalogue(BaseCatalogue):
|
|||
"""
|
||||
|
||||
def __init__(self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12),
|
||||
load_fitted=True, load_initial=False, rawdata=False):
|
||||
with_lagpatch=True, load_fitted=True, load_initial=True,
|
||||
rawdata=False):
|
||||
self.nsim = nsim
|
||||
self.paths = paths
|
||||
# Read in the mmain catalogue of summed substructure
|
||||
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
||||
self._data = mmain["mmain"]
|
||||
|
||||
# We will also need the clumps catalogue
|
||||
self._clumps_cat = ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||
load_fitted=False)
|
||||
if load_fitted:
|
||||
fits = numpy.load(paths.structfit_path(self.nsnap, nsim, "halos"))
|
||||
cols = [col for col in fits.dtype.names if col != "index"]
|
||||
X = [fits[col] for col in cols]
|
||||
self._data = add_columns(self._data, X, cols)
|
||||
|
||||
# TODO: load initial positions
|
||||
if load_initial:
|
||||
fits = numpy.load(paths.initmatch_path(nsim, "fit"))
|
||||
X, cols = [], []
|
||||
for col in fits.dtype.names:
|
||||
if col == "index":
|
||||
continue
|
||||
if col in ['x', 'y', 'z']:
|
||||
cols.append(col + "0")
|
||||
else:
|
||||
cols.append(col)
|
||||
X.append(fits[col])
|
||||
|
||||
self._data = add_columns(self._data, X, cols)
|
||||
|
||||
if not rawdata:
|
||||
if with_lagpatch:
|
||||
self._data = self._data[numpy.isfinite(self['lagpatch'])]
|
||||
# Flip positions and convert from code units to cMpc. Convert M too
|
||||
flip_cols(self._data, "x", "z")
|
||||
for p in ("x", "y", "z"):
|
||||
|
@ -402,9 +421,24 @@ class HaloCatalogue(BaseCatalogue):
|
|||
"r500c", "m200c", "m500c", "r200m", "m200m"]
|
||||
self._data = self.box.convert_from_boxunits(self._data, names)
|
||||
|
||||
if load_initial:
|
||||
names = ["x0", "y0", "z0", "lagpatch"]
|
||||
self._data = self.box.convert_from_boxunits(self._data, names)
|
||||
|
||||
if maxdist is not None:
|
||||
dist = numpy.sqrt(self._data["x"]**2 + self._data["y"]**2
|
||||
+ self._data["z"]**2)
|
||||
self._data = self._data[dist < maxdist]
|
||||
if minmass is not None:
|
||||
self._data = self._data[self._data[minmass[0]] > minmass[1]]
|
||||
|
||||
@property
|
||||
def clumps_cat(self):
|
||||
"""
|
||||
The raw clumps catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
"""
|
||||
return self._clumps_cat
|
||||
|
|
|
@ -260,7 +260,7 @@ class CSiBORGPaths:
|
|||
fname = f"{kind}_out_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npy"
|
||||
return join(fdir, fname)
|
||||
|
||||
def overlap_path(self, nsim0, nsimx):
|
||||
def overlap_path(self, nsim0, nsimx, smoothed):
|
||||
"""
|
||||
Path to the overlap files between two simulations.
|
||||
|
||||
|
@ -270,6 +270,8 @@ class CSiBORGPaths:
|
|||
IC realisation index of the first simulation.
|
||||
nsimx : int
|
||||
IC realisation index of the second simulation.
|
||||
smoothed : bool
|
||||
Whether the overlap is smoothed or not.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -280,6 +282,8 @@ class CSiBORGPaths:
|
|||
mkdir(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
fname = f"overlap_{str(nsim0).zfill(5)}_{str(nsimx).zfill(5)}.npz"
|
||||
if smoothed:
|
||||
fname = fname.replace("overlap", "overlap_smoothed")
|
||||
return join(fdir, fname)
|
||||
|
||||
def radpos_path(self, nsnap, nsim):
|
||||
|
@ -305,37 +309,24 @@ class CSiBORGPaths:
|
|||
fname = f"radpos_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npz"
|
||||
return join(fdir, fname)
|
||||
|
||||
def particle_h5py_path(self, nsim, kind=None, dtype="float32"):
|
||||
def particles_path(self, nsim):
|
||||
"""
|
||||
Path to the file containing all particles in a `.h5` file.
|
||||
Path to the files containing all particles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
kind : str
|
||||
Type of output. Must be one of `[None, 'pos', 'clumpmap']`.
|
||||
dtype : str
|
||||
Data type. Must be one of `['float32', 'float64']`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
assert kind in [None, "pos", "clumpmap"]
|
||||
assert dtype in ["float32", "float64"]
|
||||
fdir = join(self.postdir, "particles")
|
||||
if not isdir(fdir):
|
||||
makedirs(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
if kind is None:
|
||||
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
||||
else:
|
||||
fname = f"parts_{kind}_{str(nsim).zfill(5)}.h5"
|
||||
|
||||
if dtype == "float64":
|
||||
fname = fname.replace(".h5", "_f64.h5")
|
||||
|
||||
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
||||
return join(fdir, fname)
|
||||
|
||||
def density_field_path(self, mas, nsim):
|
||||
|
|
|
@ -215,7 +215,10 @@ class ParticleReader:
|
|||
|
||||
Returns
|
||||
-------
|
||||
out : array
|
||||
out : structured array or 2-dimensional array
|
||||
Particle information.
|
||||
pids : 1-dimensional array
|
||||
Particle IDs.
|
||||
"""
|
||||
# Open the particle files
|
||||
nparts, partfiles = self.open_particle(nsnap, nsim, verbose=verbose)
|
||||
|
@ -233,6 +236,8 @@ class ParticleReader:
|
|||
# Check there are no strange parameters
|
||||
if isinstance(pars_extract, str):
|
||||
pars_extract = [pars_extract]
|
||||
if "ID" in pars_extract:
|
||||
pars_extract.remove("ID")
|
||||
for p in pars_extract:
|
||||
if p not in fnames:
|
||||
raise ValueError(f"Undefined parameter `{p}`.")
|
||||
|
@ -250,6 +255,7 @@ class ParticleReader:
|
|||
par2arrpos = {par: i for i, par in enumerate(pars_extract)}
|
||||
out = numpy.full((npart_tot, len(pars_extract)), numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
pids = numpy.full(npart_tot, numpy.nan, dtype=numpy.int32)
|
||||
|
||||
start_ind = self.nparts_to_start_ind(nparts)
|
||||
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
||||
|
@ -257,19 +263,21 @@ class ParticleReader:
|
|||
i = start_ind[cpu]
|
||||
j = nparts[cpu]
|
||||
for (fname, fdtype) in zip(fnames, fdtypes):
|
||||
if fname in pars_extract:
|
||||
single_part = self.read_sp(fdtype, partfiles[cpu])
|
||||
single_part = self.read_sp(fdtype, partfiles[cpu])
|
||||
if fname == "ID":
|
||||
pids[i:i + j] = single_part
|
||||
elif fname in pars_extract:
|
||||
if return_structured:
|
||||
out[fname][i:i + j] = single_part
|
||||
else:
|
||||
out[i:i + j, par2arrpos[fname]] = single_part
|
||||
else:
|
||||
dum[i:i + j] = self.read_sp(fdtype, partfiles[cpu])
|
||||
dum[i:i + j] = single_part
|
||||
# Close the fortran files
|
||||
for partfile in partfiles:
|
||||
partfile.close()
|
||||
|
||||
return out
|
||||
return out, pids
|
||||
|
||||
def open_unbinding(self, nsnap, nsim, cpu):
|
||||
"""
|
||||
|
@ -389,11 +397,16 @@ class ParticleReader:
|
|||
class MmainReader:
|
||||
"""
|
||||
Object to generate the summed substructure catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
paths : :py:class:`csiborgtools.read.CSiBORGPaths`
|
||||
Paths objects.
|
||||
"""
|
||||
_paths = None
|
||||
|
||||
def __init__(self, paths):
|
||||
assert isinstance(paths, CSiBORGPaths) # REMOVE
|
||||
assert isinstance(paths, CSiBORGPaths)
|
||||
self._paths = paths
|
||||
|
||||
@property
|
||||
|
@ -444,7 +457,7 @@ class MmainReader:
|
|||
def make_mmain(self, nsim, verbose=False):
|
||||
"""
|
||||
Make the summed substructure catalogue for a final snapshot. Includes
|
||||
the position of the paren, the summed mass and the fraction of mass in
|
||||
the position of the parent, the summed mass and the fraction of mass in
|
||||
substructure.
|
||||
|
||||
Parameters
|
||||
|
@ -472,10 +485,10 @@ class MmainReader:
|
|||
nmain = numpy.sum(mask_main)
|
||||
# Preallocate already the output array
|
||||
out = cols_to_structured(
|
||||
nmain, [("ID", numpy.int32), ("x", numpy.float32),
|
||||
nmain, [("index", numpy.int32), ("x", numpy.float32),
|
||||
("y", numpy.float32), ("z", numpy.float32),
|
||||
("M", numpy.float32), ("subfrac", numpy.float32)])
|
||||
out["ID"] = clumparr["index"][mask_main]
|
||||
out["index"] = clumparr["index"][mask_main]
|
||||
# Because for these index == parent
|
||||
for p in ('x', 'y', 'z'):
|
||||
out[p] = clumparr[p][mask_main]
|
||||
|
@ -483,7 +496,7 @@ class MmainReader:
|
|||
for i in range(nmain):
|
||||
# Should include the main halo itself, i.e. its own ultimate parent
|
||||
out["M"][i] = numpy.sum(
|
||||
clumparr["mass_cl"][ultimate_parent == out["ID"][i]])
|
||||
clumparr["mass_cl"][ultimate_parent == out["index"][i]])
|
||||
|
||||
out["subfrac"] = 1 - clumparr["mass_cl"][mask_main] / out["M"]
|
||||
return out, ultimate_parent
|
||||
|
@ -549,3 +562,69 @@ def halfwidth_select(hw, particles):
|
|||
for p in ('x', 'y', 'z'):
|
||||
particles[p] = (particles[p] - 0.5 + hw) / (2 * hw)
|
||||
return particles
|
||||
|
||||
|
||||
def load_clump_particles(clid, particles, clump_map, clid2map):
|
||||
"""
|
||||
Load a clump's particles from a particle array. If it is not there, i.e
|
||||
clump has no associated particles, return `None`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clid : int
|
||||
Clump ID.
|
||||
particles : 2-dimensional array
|
||||
Array of particles.
|
||||
clump_map : 2-dimensional array
|
||||
Array containing start and end indices in the particle array
|
||||
corresponding to each clump.
|
||||
clid2map : dict
|
||||
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clump_particles : 2-dimensional array
|
||||
Particle array of this clump.
|
||||
"""
|
||||
try:
|
||||
k0, kf = clump_map[clid2map[clid], 1:]
|
||||
return particles[k0:kf + 1, :]
|
||||
except KeyError:
|
||||
return None
|
||||
|
||||
|
||||
def load_parent_particles(hid, particles, clump_map, clid2map, clumps_cat):
|
||||
"""
|
||||
Load a parent halo's particles from a particle array. If it is not there,
|
||||
return `None`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hid : int
|
||||
Halo ID.
|
||||
particles : 2-dimensional array
|
||||
Array of particles.
|
||||
clump_map : 2-dimensional array
|
||||
Array containing start and end indices in the particle array
|
||||
corresponding to each clump.
|
||||
clid2map : dict
|
||||
Dictionary mapping clump IDs to `clump_map` array positions.
|
||||
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||
Clumps catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
halo : 2-dimensional array
|
||||
Particle array of this halo.
|
||||
"""
|
||||
clids = clumps_cat["index"][clumps_cat["parent"] == hid]
|
||||
# We first load the particles of each clump belonging to this parent
|
||||
# and then concatenate them for further analysis.
|
||||
clumps = []
|
||||
for clid in clids:
|
||||
parts = load_clump_particles(clid, particles, clump_map, clid2map)
|
||||
if parts is not None:
|
||||
clumps.append(parts)
|
||||
if len(clumps) == 0:
|
||||
return None
|
||||
return numpy.concatenate(clumps)
|
||||
|
|
|
@ -15,7 +15,10 @@
|
|||
"""
|
||||
Various coordinate transformations.
|
||||
"""
|
||||
from os.path import isfile
|
||||
|
||||
import numpy
|
||||
from h5py import File
|
||||
|
||||
###############################################################################
|
||||
# Coordinate transforms #
|
||||
|
@ -291,14 +294,35 @@ def extract_from_structured(arr, cols):
|
|||
cols = [cols] if isinstance(cols, str) else cols
|
||||
for col in cols:
|
||||
if col not in arr.dtype.names:
|
||||
raise ValueError("Invalid column `{}`!".format(col))
|
||||
raise ValueError(f"Invalid column `{col}`!")
|
||||
# Preallocate an array and populate it
|
||||
out = numpy.zeros((arr.size, len(cols)), dtype=arr[cols[0]].dtype)
|
||||
for i, col in enumerate(cols):
|
||||
out[:, i] = arr[col]
|
||||
# Optionally flatten
|
||||
if len(cols) == 1:
|
||||
return out.reshape(
|
||||
-1,
|
||||
)
|
||||
return out.reshape(-1, )
|
||||
return out
|
||||
|
||||
|
||||
###############################################################################
|
||||
# h5py functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def read_h5(path):
|
||||
"""
|
||||
Return and return and open `h5py.File` object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str
|
||||
Path to the file.
|
||||
|
||||
Returns
|
||||
-------
|
||||
file : `h5py.File`
|
||||
"""
|
||||
if not isfile(path):
|
||||
raise IOError(f"File `{path}` does not exist!")
|
||||
return File(path, "r")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue