mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 18:18:03 +00:00
start cleaning readsim
This commit is contained in:
parent
54221a8ff5
commit
5043915fdc
1 changed files with 194 additions and 0 deletions
194
galomatch/io/readsim.py
Normal file
194
galomatch/io/readsim.py
Normal file
|
@ -0,0 +1,194 @@
|
||||||
|
import numpy as np
|
||||||
|
import fortranfile as ff
|
||||||
|
from os import listdir
|
||||||
|
|
||||||
|
outnr = str(184).zfill(5)
|
||||||
|
srcdir = '/mnt/extraspace/hdesmond/IC_test3/output_'+outnr
|
||||||
|
|
||||||
|
|
||||||
|
infofile = srcdir+'/info_'+outnr+'.txt'
|
||||||
|
f = open(infofile, 'r')
|
||||||
|
ncpuline = f.readline()
|
||||||
|
line = ncpuline.split()
|
||||||
|
|
||||||
|
ncpu = int(line[-1])
|
||||||
|
print("ncpu:", ncpu)
|
||||||
|
|
||||||
|
print("Reading in particles of output", int(srcdir[-5:]))
|
||||||
|
|
||||||
|
srcdirlist = listdir(srcdir)
|
||||||
|
|
||||||
|
if 'unbinding_'+srcdir[-5:]+'.out00001' not in srcdirlist:
|
||||||
|
print("Couldn't find unbinding_"+srcdir[-5:]+".out00001 in", srcdir)
|
||||||
|
print("use mergertreeplot.py -h or --help to print help message.")
|
||||||
|
quit()
|
||||||
|
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
# First read headers
|
||||||
|
#-----------------------
|
||||||
|
nparts = np.zeros(ncpu, dtype='int32')
|
||||||
|
partfiles = [0]*ncpu
|
||||||
|
|
||||||
|
for cpu in range(ncpu):
|
||||||
|
srcfile = srcdir+'/part_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
|
||||||
|
partfiles[cpu] = ff.FortranFile(srcfile)
|
||||||
|
|
||||||
|
ncpu = partfiles[cpu].readInts()
|
||||||
|
ndim = partfiles[cpu].readInts()
|
||||||
|
nparts[cpu] = partfiles[cpu].readInts()
|
||||||
|
localseed = partfiles[cpu].readInts()
|
||||||
|
nstar_tot = partfiles[cpu].readInts()
|
||||||
|
mstar_tot = partfiles[cpu].readReals('d')
|
||||||
|
mstar_lost = partfiles[cpu].readReals('d')
|
||||||
|
nsink = partfiles[cpu].readInts()
|
||||||
|
|
||||||
|
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
|
||||||
|
|
||||||
|
|
||||||
|
#-------------------
|
||||||
|
# Allocate arrays
|
||||||
|
#-------------------
|
||||||
|
nparttot = nparts.sum()
|
||||||
|
|
||||||
|
dum = np.zeros(nparttot, dtype='float16')
|
||||||
|
|
||||||
|
if i==0:
|
||||||
|
#x = np.zeros(nparttot, dtype='float16')
|
||||||
|
#y = np.zeros(nparttot, dtype='float16')
|
||||||
|
#z = np.zeros(nparttot, dtype='float16')
|
||||||
|
|
||||||
|
mass = np.zeros(nparttot, dtype='float16')
|
||||||
|
ID = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
level = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
clumpid = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
else:
|
||||||
|
#x_inv = np.zeros(nparttot, dtype='float16')
|
||||||
|
#y_inv = np.zeros(nparttot, dtype='float16')
|
||||||
|
#z_inv = np.zeros(nparttot, dtype='float16')
|
||||||
|
|
||||||
|
mass_inv = np.zeros(nparttot, dtype='float16')
|
||||||
|
ID_inv = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
level_inv = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
clumpid_inv = np.zeros(nparttot, dtype='int32')
|
||||||
|
|
||||||
|
|
||||||
|
#----------------------
|
||||||
|
# Read particle data
|
||||||
|
#----------------------
|
||||||
|
|
||||||
|
#read(1)ncpu2 # What you would do in fortran
|
||||||
|
#read(1)ndim2
|
||||||
|
#read(1)npart2
|
||||||
|
#read(1)
|
||||||
|
#read(1)
|
||||||
|
#read(1)
|
||||||
|
#read(1)
|
||||||
|
#read(1)
|
||||||
|
#do i=1,ndim
|
||||||
|
#read(1)m
|
||||||
|
#x(1:npart2,i)=m
|
||||||
|
#end do
|
||||||
|
#! Skip velocity
|
||||||
|
#do i=1,ndim
|
||||||
|
#read(1)m
|
||||||
|
#end do
|
||||||
|
#! Read mass
|
||||||
|
#read(1)m
|
||||||
|
#if(nstar>0)then
|
||||||
|
#read(1) ! Skip identity
|
||||||
|
#read(1) ! Skip level
|
||||||
|
#read(1)family
|
||||||
|
#read(1)tag
|
||||||
|
#read(1)age
|
||||||
|
|
||||||
|
start_ind = np.zeros(ncpu, dtype='int')
|
||||||
|
for cpu in range(ncpu-1):
|
||||||
|
start_ind[cpu+1] = nparts[cpu] + start_ind[cpu]
|
||||||
|
|
||||||
|
for cpu in range(ncpu):
|
||||||
|
unbfile = srcdir+'/unbinding_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
|
||||||
|
unbffile = ff.FortranFile(unbfile)
|
||||||
|
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Think they're stored as double so must read as double
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Positions
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Velocities; this all just overwrites itself
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
|
||||||
|
mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Mass
|
||||||
|
|
||||||
|
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
|
||||||
|
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
|
||||||
|
ID[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
|
||||||
|
|
||||||
|
level[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
|
||||||
|
|
||||||
|
clumpid[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
|
||||||
|
|
||||||
|
del dum
|
||||||
|
|
||||||
|
|
||||||
|
print("Minimum clump ID:", np.min(clumpid)) # This is the clump a particle has been assigned to, so min should be 0 which means not in clump
|
||||||
|
clumpid = np.absolute(clumpid) # Not sure why this is here...
|
||||||
|
|
||||||
|
|
||||||
|
#random.shuffle(ID); random.shuffle(ID_inv) # If the IDs are randomised but not the clumpIDs then all of the below should be random
|
||||||
|
|
||||||
|
print(np.min(ID), np.median(ID), np.mean(ID), np.max(ID))
|
||||||
|
print(np.min(ID_inv), np.median(ID_inv), np.mean(ID_inv), np.max(ID_inv))
|
||||||
|
|
||||||
|
print(np.min(level), np.median(level), np.mean(level), np.max(level))
|
||||||
|
print(np.min(level_inv), np.median(level_inv), np.mean(level_inv), np.max(level_inv))
|
||||||
|
|
||||||
|
print(np.min(mass), np.median(mass), np.mean(mass), np.max(mass))
|
||||||
|
print(np.min(mass_inv), np.median(mass_inv), np.mean(mass_inv), np.max(mass_inv))
|
||||||
|
|
||||||
|
#plt.clf()
|
||||||
|
#plt.hist(mass)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
#index lev parent(2) ncell peak_x peak_y(5) peak_z rho- rho+(8) rho_av mass_cl relevance(11)
|
||||||
|
clumparr = np.genfromtxt(srcdir1+"/clump_"+outnr1+".dat")
|
||||||
|
clumparr_inv = np.genfromtxt(srcdir2+"/clump_"+outnr2+".dat")
|
||||||
|
|
||||||
|
clumpID, parent, Mclump = clumparr[:,0].astype(int), clumparr[:,2].astype(int), clumparr[:,10]
|
||||||
|
clumpID_inv, parent_inv, Mclump_inv = clumparr_inv[:,0].astype(int), clumparr_inv[:,2].astype(int), clumparr_inv[:,10]
|
||||||
|
|
||||||
|
#clumpID_main = clumpID[clumpID==parent] # IDs of main halos only from the clump file
|
||||||
|
#clumpID_main_inv = clumpID_inv[clumpID_inv==parent_inv]
|
||||||
|
|
||||||
|
#clumpID_big = clumpID[Mclump>np.median(Mclump)] # IDs of halos more massive than the median
|
||||||
|
#clumpID_big_inv = clumpID_inv[Mclump_inv>np.median(Mclump_inv)]
|
||||||
|
|
||||||
|
clumpID_big = clumpID[Mclump>np.percentile(Mclump, 90)]
|
||||||
|
clumpID_big_inv = clumpID_inv[Mclump_inv>np.percentile(Mclump_inv, 90)]
|
||||||
|
|
||||||
|
#clumpID_small = clumpID[Mclump<=np.median(Mclump)] # IDs of halos more massive than the median
|
||||||
|
#clumpID_small_inv = clumpID_inv[Mclump_inv<=np.median(Mclump_inv)]
|
||||||
|
|
||||||
|
|
||||||
|
#[np.where(clumpid==x) for x in clumpID_main]
|
||||||
|
|
||||||
|
print("CHECK:", len(ID), len(ID_inv), len(np.intersect1d(ID, ID_inv)), "(should all be the same)")
|
||||||
|
|
||||||
|
print("Total number of clumps in the two sims:", len(clumparr), len(clumparr_inv))
|
||||||
|
|
||||||
|
print("Total number of particles in the two sims:", len(ID), len(ID_inv), "(should be the same)")
|
||||||
|
|
||||||
|
print("Fraction of particles within halos in the two sims:", round(len(ID[clumpid!=0])/float(len(ID)), 6), round(len(ID_inv[clumpid_inv!=0])/float(len(ID)), 6))
|
||||||
|
print("Fraction of particles within halos in *both* sims:", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv)), 6), "), ratio =", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))) / (len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv))), 3))
|
||||||
|
|
||||||
|
print("Fraction of particles in massive halos in the two sims:", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)), 6), round(np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6))
|
||||||
|
print("Fraction of particles in massive halos in *both* sims:", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6), "), ratio =", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))) / (np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID_inv))), 3))
|
Loading…
Reference in a new issue