first commit

This commit is contained in:
rstiskalek 2022-10-02 11:12:45 +01:00
parent ca5c465cf5
commit 54221a8ff5
7 changed files with 352 additions and 0 deletions

4
.gitignore vendored Normal file
View file

@ -0,0 +1,4 @@
venv_galomatch/
share/
bin/
.bashrc

37
data/descr.txt Normal file
View file

@ -0,0 +1,37 @@
Various column names
Clump file columns:
"index", "lev", "parent", "ncell", "peak_x", "peak_y", "peak_z", "rho-", "rho+", "rho_av", "mass_cl", "relevance"
Mergertree file columns:
"clump", "progenitor", "prog outputnr", "desc mass", "desc npart", "desc x", "desc y", "desc z", "desc vx", "desc vy", "desc vz"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The merger trees are stored in `output_XXXXX/mergertree_XXXXX.txtYYYYY` files. Each file contains 11 columns:
* `clump`: clump ID of a clump at this output number
* `progenitor`: the progenitor clump ID in output number "prog_outputnr"
* `prog_outputnr`: the output number of when the progenitor was an alive clump
* `desc mass`: mass of the current clump.
* `desc npart`: number of particles of the current clump.
* `desc x,y,z`: x, y, z position of current clump.
* `desc vx, vy, vz`: x, y, z velocities of current clump.
desc_mass and desc_npart will be either inclusive or exclusive, depending on how you set the `use_exclusive_mass` parameter.
(See below for details)
**How to read the output:**
* A clump > 0 has progenitor > 0: Standard case. A direct progenitor from the adjacent previous snapshot was identified for this clump.
* A clump > 0 has progenitor = 0: no progenitor could be established and the clump is treated as newly formed.
* A clump > 0 has progenitor < 0: it means that no direct progenitor could be found in the adjacent previous snapshot, but a progenitor was identified from an earlier, non-adjacent snapshot.
* A clump < 0 has progenitor > 0: this progenitor merged into this clump, but is not this clump's main progenitor.
* A clump < 0 has progenitor < 0: this shouldn't happen.
### Visualisation
`ramses/utils/py/mergertreeplot.py` is a python 2 script to plot the merger trees as found by this patch.
Details on options and usage are at the start of the script as a comment.

14
galomatch/__init__.py Normal file
View file

@ -0,0 +1,14 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

14
galomatch/io/__init__.py Normal file
View file

@ -0,0 +1,14 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

234
galomatch/io/_readsim.py Normal file
View file

@ -0,0 +1,234 @@
import numpy as np
import math
import matplotlib.pyplot as plt
import fortranfile as ff
from os import listdir
import random
outnr1 = str(184).zfill(5)
outnr2 = str(2).zfill(5)
srcdir1 = '/mnt/extraspace/hdesmond/IC_test3/output_'+outnr1
srcdir2 = '/mnt/extraspace/hdesmond/IC_test3_inv/output_'+outnr2
for i in range(2):
print("Starting ", i)
if i==0:
srcdir = srcdir1
outnr = outnr1
else:
srcdir = srcdir2
outnr = outnr2
infofile = srcdir+'/info_'+outnr+'.txt'
f = open(infofile, 'r')
ncpuline = f.readline()
line = ncpuline.split()
ncpu = int(line[-1])
print("ncpu:", ncpu)
print("Reading in particles of output", int(srcdir[-5:]))
srcdirlist = listdir(srcdir)
if 'unbinding_'+srcdir[-5:]+'.out00001' not in srcdirlist:
print("Couldn't find unbinding_"+srcdir[-5:]+".out00001 in", srcdir)
print("use mergertreeplot.py -h or --help to print help message.")
quit()
#-----------------------
# First read headers
#-----------------------
nparts = np.zeros(ncpu, dtype='int32')
partfiles = [0]*ncpu
for cpu in range(ncpu):
srcfile = srcdir+'/part_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
partfiles[cpu] = ff.FortranFile(srcfile)
ncpu = partfiles[cpu].readInts()
ndim = partfiles[cpu].readInts()
nparts[cpu] = partfiles[cpu].readInts()
localseed = partfiles[cpu].readInts()
nstar_tot = partfiles[cpu].readInts()
mstar_tot = partfiles[cpu].readReals('d')
mstar_lost = partfiles[cpu].readReals('d')
nsink = partfiles[cpu].readInts()
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
#-------------------
# Allocate arrays
#-------------------
nparttot = nparts.sum()
dum = np.zeros(nparttot, dtype='float16')
if i==0:
#x = np.zeros(nparttot, dtype='float16')
#y = np.zeros(nparttot, dtype='float16')
#z = np.zeros(nparttot, dtype='float16')
mass = np.zeros(nparttot, dtype='float16')
ID = np.zeros(nparttot, dtype='int32')
level = np.zeros(nparttot, dtype='int32')
clumpid = np.zeros(nparttot, dtype='int32')
else:
#x_inv = np.zeros(nparttot, dtype='float16')
#y_inv = np.zeros(nparttot, dtype='float16')
#z_inv = np.zeros(nparttot, dtype='float16')
mass_inv = np.zeros(nparttot, dtype='float16')
ID_inv = np.zeros(nparttot, dtype='int32')
level_inv = np.zeros(nparttot, dtype='int32')
clumpid_inv = np.zeros(nparttot, dtype='int32')
#----------------------
# Read particle data
#----------------------
#read(1)ncpu2 # What you would do in fortran
#read(1)ndim2
#read(1)npart2
#read(1)
#read(1)
#read(1)
#read(1)
#read(1)
#do i=1,ndim
#read(1)m
#x(1:npart2,i)=m
#end do
#! Skip velocity
#do i=1,ndim
#read(1)m
#end do
#! Read mass
#read(1)m
#if(nstar>0)then
#read(1) ! Skip identity
#read(1) ! Skip level
#read(1)family
#read(1)tag
#read(1)age
start_ind = np.zeros(ncpu, dtype='int')
for cpu in range(ncpu-1):
start_ind[cpu+1] = nparts[cpu] + start_ind[cpu]
for cpu in range(ncpu):
unbfile = srcdir+'/unbinding_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
unbffile = ff.FortranFile(unbfile)
if i==0:
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Think they're stored as double so must read as double
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Positions
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Velocities; this all just overwrites itself
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Mass
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
ID[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
level[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
clumpid[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
else:
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
mass_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
ID_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
level_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
clumpid_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
del dum
if i==0:
print("Minimum clump ID:", np.min(clumpid)) # This is the clump a particle has been assigned to, so min should be 0 which means not in clump
clumpid = np.absolute(clumpid) # Not sure why this is here...
else:
print("Minimum inv clump ID:", np.min(clumpid_inv))
clumpid_inv = np.absolute(clumpid_inv)
#random.shuffle(ID); random.shuffle(ID_inv) # If the IDs are randomised but not the clumpIDs then all of the below should be random
print(np.min(ID), np.median(ID), np.mean(ID), np.max(ID))
print(np.min(ID_inv), np.median(ID_inv), np.mean(ID_inv), np.max(ID_inv))
print(np.min(level), np.median(level), np.mean(level), np.max(level))
print(np.min(level_inv), np.median(level_inv), np.mean(level_inv), np.max(level_inv))
print(np.min(mass), np.median(mass), np.mean(mass), np.max(mass))
print(np.min(mass_inv), np.median(mass_inv), np.mean(mass_inv), np.max(mass_inv))
#plt.clf()
#plt.hist(mass)
#plt.show()
#index lev parent(2) ncell peak_x peak_y(5) peak_z rho- rho+(8) rho_av mass_cl relevance(11)
clumparr = np.genfromtxt(srcdir1+"/clump_"+outnr1+".dat")
clumparr_inv = np.genfromtxt(srcdir2+"/clump_"+outnr2+".dat")
clumpID, parent, Mclump = clumparr[:,0].astype(int), clumparr[:,2].astype(int), clumparr[:,10]
clumpID_inv, parent_inv, Mclump_inv = clumparr_inv[:,0].astype(int), clumparr_inv[:,2].astype(int), clumparr_inv[:,10]
#clumpID_main = clumpID[clumpID==parent] # IDs of main halos only from the clump file
#clumpID_main_inv = clumpID_inv[clumpID_inv==parent_inv]
#clumpID_big = clumpID[Mclump>np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_big_inv = clumpID_inv[Mclump_inv>np.median(Mclump_inv)]
clumpID_big = clumpID[Mclump>np.percentile(Mclump, 90)]
clumpID_big_inv = clumpID_inv[Mclump_inv>np.percentile(Mclump_inv, 90)]
#clumpID_small = clumpID[Mclump<=np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_small_inv = clumpID_inv[Mclump_inv<=np.median(Mclump_inv)]
#[np.where(clumpid==x) for x in clumpID_main]
print("CHECK:", len(ID), len(ID_inv), len(np.intersect1d(ID, ID_inv)), "(should all be the same)")
print("Total number of clumps in the two sims:", len(clumparr), len(clumparr_inv))
print("Total number of particles in the two sims:", len(ID), len(ID_inv), "(should be the same)")
print("Fraction of particles within halos in the two sims:", round(len(ID[clumpid!=0])/float(len(ID)), 6), round(len(ID_inv[clumpid_inv!=0])/float(len(ID)), 6))
print("Fraction of particles within halos in *both* sims:", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv)), 6), "), ratio =", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))) / (len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv))), 3))
print("Fraction of particles in massive halos in the two sims:", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)), 6), round(np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6))
print("Fraction of particles in massive halos in *both* sims:", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6), "), ratio =", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))) / (np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID_inv))), 3))

49
scripts/readsim.ipynb Normal file
View file

@ -0,0 +1,49 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe kernel failed to start as '_psutil_linux' could not be imported from 'most likely due to a circular import'.\n",
"\u001b[1;31mClick <a href='https://aka.ms/kernelFailuresModuleImportErrFromFile'>here</a> for more info."
]
}
],
"source": [
"a"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.0 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.8.0"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "df0893f56f349688326838aaeea0de204df53a132722cbd565e54b24a8fec5f6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file