Update plotting routines

This commit is contained in:
rstiskalek 2023-05-24 11:25:22 +01:00
parent f82633f816
commit 371b4bd057

View file

@ -32,25 +32,43 @@ except ModuleNotFoundError:
@cache_to_disk(7) @cache_to_disk(7)
def read_cdf(simname, run, kwargs): def read_dist(simname, run, kind, kwargs):
"""Read the CDFs. Caches them to disk"""
paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
return reader.build_cdf(simname, run, verbose=True) return reader.build_dist(simname, run, kind, verbose=True)
def plot_cdf(run, kwargs): @cache_to_disk(7)
def make_kl(simname, run, nsim, nobs, kwargs):
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
pdf = read_dist("quijote", run, "pdf", kwargs)
return reader.kl_divergence(simname, run, nsim, pdf, nobs=nobs)
@cache_to_disk(7)
def make_ks(simname, run, nsim, nobs, kwargs):
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
cdf = read_dist("quijote", run, "cdf", kwargs)
return reader.ks_significance(simname, run, nsim, cdf, nobs=nobs)
def plot_dist(run, kind, kwargs):
""" """
Plot the CDF of the nearest neighbour distance for Quijote and CSiBORG. Plot the PDF/CDF of the nearest neighbour distance for Quijote and CSiBORG.
""" """
print("Plotting the CDFs.", flush=True) assert kind in ["pdf", "cdf"]
print(f"Plotting the {kind}.", flush=True)
paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
x = reader.bin_centres("neighbour") x = reader.bin_centres("neighbour")
y_quijote = read_cdf("quijote", run, kwargs) y_quijote = read_dist("quijote", run, kind, kwargs)
y_csiborg = read_cdf("csiborg", run, kwargs) y_csiborg = read_dist("csiborg", run, kind, kwargs)
ncdf = y_quijote.shape[0] ncdf = y_csiborg.shape[0]
with plt.style.context(utils.mplstyle): with plt.style.context(utils.mplstyle):
plt.figure() plt.figure()
@ -64,40 +82,83 @@ def plot_cdf(run, kwargs):
plt.plot(x, y_quijote[i], c="C0", label=label1) plt.plot(x, y_quijote[i], c="C0", label=label1)
plt.plot(x, y_csiborg[i], c="C1", label=label2) plt.plot(x, y_csiborg[i], c="C1", label=label2)
plt.xlim(0, 75) plt.xlim(0, 75)
plt.ylim(0, 1)
plt.xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$") plt.xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
if kind == "pdf":
plt.ylabel(r"$p(r_{1\mathrm{NN}})$")
else:
plt.ylabel(r"$\mathrm{CDF}(r_{1\mathrm{NN}})$") plt.ylabel(r"$\mathrm{CDF}(r_{1\mathrm{NN}})$")
plt.ylim(0, 1)
plt.legend() plt.legend()
plt.tight_layout() plt.tight_layout()
for ext in ["png"]: for ext in ["png"]:
fout = join(utils.fout, f"1nn_cdf_{run}.{ext}") fout = join(utils.fout, f"1nn_{kind}_{run}.{ext}")
print(f"Saving to `{fout}`.") print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight") plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
plt.close() plt.close()
def plot_significance_hist(run, nsim, kwargs): def plot_significance_hist(simname, run, nsim, nobs, kind, kwargs):
""" """Plot a histogram of the significance of the 1NN distance."""
Plot the histogram of the significance of the 1NN distance for CSiBORG. assert kind in ["kl", "ks"]
"""
paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) if kind == "kl":
x = make_kl(simname, run, nsim, nobs, kwargs)
cdf = read_cdf("quijote", run, kwargs) else:
x = make_ks(simname, run, nsim, nobs, kwargs)
x = reader.calc_significance("csiborg", run, nsim, cdf) x = numpy.log10(x)
x = x[numpy.isfinite(x)] x = x[numpy.isfinite(x)]
with plt.style.context(utils.mplstyle): with plt.style.context(utils.mplstyle):
plt.figure() plt.figure()
plt.hist(x, bins="auto") plt.hist(x, bins="auto")
plt.xlabel(r"$r_{1\mathrm{NN}}$ significance $\mathrm{[\sigma]}$") if kind == "ks":
plt.xlabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution")
else:
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
plt.ylabel(r"Counts") plt.ylabel(r"Counts")
plt.tight_layout() plt.tight_layout()
for ext in ["png"]: for ext in ["png"]:
fout = join(utils.fout, f"sigma_{run}_{str(nsim).zfill(5)}.{ext}") if simname == "quijote":
nsim = paths.quijote_fiducial_nsim(nsim, nobs)
fout = join(utils.fout, f"significance_{kind}_{simname}_{run}_{str(nsim).zfill(5)}.{ext}") # noqa
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
plt.close()
def plot_significance_mass(simname, run, nsim, nobs, kind, kwargs):
"""
Plot significance of the 1NN distance as a function of the total mass.
"""
assert kind in ["kl", "ks"]
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
x = reader.read_single(simname, run, nsim, nobs)["mass"]
if kind == "kl":
y = make_kl(simname, run, nsim, nobs, kwargs)
else:
y = make_ks(simname, run, nsim, nobs, kwargs)
with plt.style.context(utils.mplstyle):
plt.figure()
plt.scatter(x, y)
plt.xscale("log")
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
if kind == "ks":
plt.ylabel(r"$p$-value of $r_{1\mathrm{NN}}$ distribution")
plt.yscale("log")
else:
plt.ylabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
plt.tight_layout()
for ext in ["png"]:
if simname == "quijote":
nsim = paths.quijote_fiducial_nsim(nsim, nobs)
fout = join(utils.fout, f"significance_vs_mass_{kind}_{simname}_{run}_{str(nsim).zfill(5)}.{ext}") # noqa
print(f"Saving to `{fout}`.") print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight") plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
plt.close() plt.close()
@ -114,13 +175,15 @@ if __name__ == "__main__":
"nbins_neighbour": 150, "nbins_neighbour": 150,
"paths_kind": csiborgtools.paths_glamdring} "paths_kind": csiborgtools.paths_glamdring}
cached_funcs = ["read_cdf"] cached_funcs = ["read_dist", "make_kl", "make_ks"]
if args.clean: if args.clean:
for func in cached_funcs: for func in cached_funcs:
print(f"Cleaning cache for function {func}.") print(f"Cleaning cache for function `{func}`.")
delete_disk_caches_for_function(func) delete_disk_caches_for_function(func)
# paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
# reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
run = "mass003"
plot_significance_hist("mass003", 7444, kwargs) plot_significance_mass("quijote", run, 0, nobs=0, kind="ks",
kwargs=kwargs)