mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:38:02 +00:00
Switch to h5py format (#52)
* Edit the particle paths * Remove script * Add h5py to dumping * Minor adjustments * add h5py support * remove split path * h5py support * Type * Edit initmatch paths * Shorten func * dist_centmass to work with 2D arrays * Forgot to return the centre of mass * Fixed code * Fix halo bug * Start MPI broadcasting * Mini bug * Remove commenting * Remove test statement * Fix index * Printing from rank 0 only * Move where clump index stored * Add dtype options * Add dtype options
This commit is contained in:
parent
553eec8228
commit
1a9e6177d7
8 changed files with 236 additions and 323 deletions
|
@ -40,8 +40,7 @@ class BaseStructure(ABC):
|
|||
|
||||
@particles.setter
|
||||
def particles(self, particles):
|
||||
pars = ["x", "y", "z", "M"]
|
||||
assert all(p in particles.dtype.names for p in pars)
|
||||
assert particles.ndim == 2 and particles.shape[1] == 7
|
||||
self._particles = particles
|
||||
|
||||
@property
|
||||
|
@ -256,24 +255,14 @@ class BaseStructure(ABC):
|
|||
return numpy.nan, numpy.nan
|
||||
return rs[k], cmass[k]
|
||||
|
||||
@property
|
||||
def keys(self):
|
||||
"""
|
||||
Particle array keys.
|
||||
|
||||
Returns
|
||||
-------
|
||||
key : list of str
|
||||
"""
|
||||
return self.particles.dtype.names
|
||||
|
||||
def __getitem__(self, key):
|
||||
keys = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
||||
if key not in self.keys:
|
||||
raise RuntimeError("Invalid key `{}`!".format(key))
|
||||
return self.particles[key]
|
||||
raise RuntimeError(f"Invalid key `{key}`!")
|
||||
return self.particles[:, keys.index(key)]
|
||||
|
||||
def __len__(self):
|
||||
return self.particles.size
|
||||
return self.particles.shape[0]
|
||||
|
||||
|
||||
class Clump(BaseStructure):
|
||||
|
|
|
@ -827,8 +827,8 @@ def dist_centmass(clump):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
clump : structurered arrays
|
||||
Clump structured array. Keyes must include `x`, `y`, `z` and `M`.
|
||||
clump : 2-dimensional array of shape (n_particles, 7)
|
||||
Particle array. The first four columns must be `x`, `y`, `z` and `M`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -838,16 +838,8 @@ def dist_centmass(clump):
|
|||
Center of mass coordinates.
|
||||
"""
|
||||
# CM along each dimension
|
||||
cmx, cmy, cmz = [numpy.average(clump[p], weights=clump["M"])
|
||||
for p in ("x", "y", "z")]
|
||||
# Particle distance from the CM
|
||||
dist = numpy.sqrt(
|
||||
numpy.square(clump["x"] - cmx)
|
||||
+ numpy.square(clump["y"] - cmy)
|
||||
+ numpy.square(clump["z"] - cmz)
|
||||
)
|
||||
|
||||
return dist, numpy.asarray([cmx, cmy, cmz])
|
||||
cm = numpy.average(clump[:, :3], weights=clump[:, 3], axis=0)
|
||||
return numpy.linalg.norm(clump[:, :3] - cm, axis=1), cm
|
||||
|
||||
|
||||
def dist_percentile(dist, qs, distmax=0.075):
|
||||
|
|
|
@ -132,40 +132,19 @@ class CSiBORGPaths:
|
|||
nsim : int
|
||||
IC realisation index.
|
||||
kind : str
|
||||
Type of match. Can be either `fit` or `particles`.
|
||||
Type of match. Must be one of `["particles", "fit", "halomap"]`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
assert kind in ["fit", "particles"]
|
||||
assert kind in ["particles", "fit", "halomap"]
|
||||
ftype = "npy" if kind == "fit" else "h5"
|
||||
fdir = join(self.postdir, "initmatch")
|
||||
if not isdir(fdir):
|
||||
mkdir(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
return join(fdir, f"{kind}_{str(nsim).zfill(5)}.npy")
|
||||
|
||||
def split_path(self, nsnap, nsim):
|
||||
"""
|
||||
Path to the `split` files from `pre_splithalos`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsnap : int
|
||||
Snapshot index.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
fdir = join(self.postdir, "split")
|
||||
if not isdir(fdir):
|
||||
mkdir(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
return join(
|
||||
fdir, f"clumps_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npz")
|
||||
return join(fdir, f"{kind}_{str(nsim).zfill(5)}.{ftype}")
|
||||
|
||||
def get_ics(self, tonew):
|
||||
"""
|
||||
|
@ -326,30 +305,37 @@ class CSiBORGPaths:
|
|||
fname = f"radpos_{str(nsim).zfill(5)}_{str(nsnap).zfill(5)}.npz"
|
||||
return join(fdir, fname)
|
||||
|
||||
def particle_h5py_path(self, nsim, with_vel):
|
||||
def particle_h5py_path(self, nsim, kind=None, dtype="float32"):
|
||||
"""
|
||||
Path to the files containing all particles in a `.hdf5` file. Used for
|
||||
the SPH calculation.
|
||||
Path to the file containing all particles in a `.h5` file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
with_vel : bool
|
||||
Whether velocities are included.
|
||||
kind : str
|
||||
Type of output. Must be one of `[None, 'pos', 'clumpmap']`.
|
||||
dtype : str
|
||||
Data type. Must be one of `['float32', 'float64']`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
fdir = join(self.postdir, "environment")
|
||||
assert kind in [None, "pos", "clumpmap"]
|
||||
assert dtype in ["float32", "float64"]
|
||||
fdir = join(self.postdir, "particles")
|
||||
if not isdir(fdir):
|
||||
makedirs(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
if with_vel:
|
||||
if kind is None:
|
||||
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
||||
else:
|
||||
fname = f"parts_pos_{str(nsim).zfill(5)}.h5"
|
||||
fname = f"parts_{kind}_{str(nsim).zfill(5)}.h5"
|
||||
|
||||
if dtype == "float64":
|
||||
fname = fname.replace(".h5", "_f64.h5")
|
||||
|
||||
return join(fdir, fname)
|
||||
|
||||
def density_field_path(self, mas, nsim):
|
||||
|
|
|
@ -20,6 +20,7 @@ from argparse import ArgumentParser
|
|||
from datetime import datetime
|
||||
from os.path import join
|
||||
|
||||
import h5py
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from tqdm import tqdm
|
||||
|
@ -94,19 +95,18 @@ def fit_clump(particles, clump_info, box):
|
|||
return out
|
||||
|
||||
|
||||
def load_clump_particles(clumpid, particle_archive):
|
||||
def load_clump_particles(clumpid, particles, clump_map):
|
||||
"""
|
||||
Load a clump's particles from the particle archive. If it is not there, i.e
|
||||
clump has no associated particles, return `None`.
|
||||
Load a clump's particles. If it is not there, i.e clump has no associated
|
||||
particles, return `None`.
|
||||
"""
|
||||
try:
|
||||
part = particle_archive[str(clumpid)]
|
||||
return particles[clump_map[clumpid], :]
|
||||
except KeyError:
|
||||
part = None
|
||||
return part
|
||||
return None
|
||||
|
||||
|
||||
def load_parent_particles(clumpid, particle_archive, clumps_cat):
|
||||
def load_parent_particles(clumpid, particles, clump_map, clumps_cat):
|
||||
"""
|
||||
Load a parent halo's particles.
|
||||
"""
|
||||
|
@ -115,14 +115,13 @@ def load_parent_particles(clumpid, particle_archive, clumps_cat):
|
|||
# and then concatenate them for further analysis.
|
||||
clumps = []
|
||||
for ind in indxs:
|
||||
parts = load_clump_particles(ind, particle_archive)
|
||||
parts = load_clump_particles(ind, particles, clump_map)
|
||||
if parts is not None:
|
||||
clumps.append([parts, None])
|
||||
clumps.append(parts)
|
||||
|
||||
if len(clumps) == 0:
|
||||
return None
|
||||
return csiborgtools.match.concatenate_parts(clumps,
|
||||
include_velocities=True)
|
||||
return numpy.concatenate(clumps)
|
||||
|
||||
|
||||
# We now start looping over all simulations
|
||||
|
@ -133,10 +132,10 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
||||
|
||||
# Archive of clumps, keywords are their clump IDs
|
||||
particle_archive = numpy.load(paths.split_path(nsnap, nsim))
|
||||
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, maxdist=None,
|
||||
minmass=None, rawdata=True,
|
||||
# Particle archive
|
||||
particles = h5py.File(paths.particle_h5py_path(nsim), 'r')["particles"]
|
||||
clump_map = h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), 'r')
|
||||
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||
load_fitted=False)
|
||||
# We check whether we fit halos or clumps, will be indexing over different
|
||||
# iterators.
|
||||
|
@ -159,9 +158,10 @@ for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|||
continue
|
||||
|
||||
if args.kind == "halos":
|
||||
part = load_parent_particles(clumpid, particle_archive, clumps_cat)
|
||||
part = load_parent_particles(clumpid, particles, clump_map,
|
||||
clumps_cat)
|
||||
else:
|
||||
part = load_clump_particles(clumpid, particle_archive)
|
||||
part = load_clump_particles(clumpid, particles, clump_map)
|
||||
|
||||
# We fit the particles if there are any. If not we assign the index,
|
||||
# otherwise it would be NaN converted to integers (-2147483648) and
|
||||
|
|
|
@ -20,6 +20,7 @@ from argparse import ArgumentParser
|
|||
from datetime import datetime
|
||||
from gc import collect
|
||||
|
||||
import h5py
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from tqdm import trange
|
||||
|
@ -46,7 +47,6 @@ if nproc > 1:
|
|||
raise NotImplementedError("MPI is not implemented implemented yet.")
|
||||
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
cols_collect = [("r", numpy.float32), ("M", numpy.float32)]
|
||||
if args.ics is None or args.ics == -1:
|
||||
nsims = paths.get_ics(tonew=False)
|
||||
|
@ -54,37 +54,36 @@ else:
|
|||
nsims = args.ics
|
||||
|
||||
|
||||
def load_clump_particles(clumpid, particle_archive):
|
||||
def load_clump_particles(clumpid, particles, clump_map):
|
||||
"""
|
||||
Load a clump's particles from the particle archive. If it is not there, i.e
|
||||
clump has no associated particles, return `None`.
|
||||
Load a clump's particles. If it is not there, i.e clump has no associated
|
||||
particles, return `None`.
|
||||
"""
|
||||
try:
|
||||
part = particle_archive[str(clumpid)]
|
||||
return particles[clump_map[clumpid], :]
|
||||
except KeyError:
|
||||
part = None
|
||||
return part
|
||||
return None
|
||||
|
||||
|
||||
def load_parent_particles(clumpid, particle_archive, clumps_cat):
|
||||
def load_parent_particles(clumpid, particles, clump_map, clumps_cat):
|
||||
"""
|
||||
Load a parent halo's particles.
|
||||
"""
|
||||
indxs = clumps_cat["index"][clumps_cat["parent"] == clumpid]
|
||||
# We first load the particles of each clump belonging to this
|
||||
# parent and then concatenate them for further analysis.
|
||||
# We first load the particles of each clump belonging to this parent
|
||||
# and then concatenate them for further analysis.
|
||||
clumps = []
|
||||
for ind in indxs:
|
||||
parts = load_clump_particles(ind, particle_archive)
|
||||
parts = load_clump_particles(ind, particles, clump_map)
|
||||
if parts is not None:
|
||||
clumps.append(parts)
|
||||
|
||||
if len(clumps) == 0:
|
||||
return None
|
||||
return csiborgtools.match.concatenate_parts(clumps)
|
||||
return numpy.concatenate(clumps)
|
||||
|
||||
|
||||
# We loop over simulations. Here later optionlaly add MPI.
|
||||
# We loop over simulations. Here later optionally add MPI.
|
||||
for i, nsim in enumerate(nsims):
|
||||
if rank == 0:
|
||||
now = datetime.now()
|
||||
|
@ -92,8 +91,8 @@ for i, nsim in enumerate(nsims):
|
|||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
||||
|
||||
# Archive of clumps, keywords are their clump IDs
|
||||
particle_archive = numpy.load(paths.split_path(nsnap, nsim))
|
||||
particles = h5py.File(paths.particle_h5py_path(nsim), 'r')["particles"]
|
||||
clump_map = h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), 'r')
|
||||
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, maxdist=None,
|
||||
minmass=None, rawdata=True,
|
||||
load_fitted=False)
|
||||
|
@ -109,8 +108,8 @@ for i, nsim in enumerate(nsims):
|
|||
continue
|
||||
|
||||
clumpid = clumps_cat["index"][j]
|
||||
|
||||
parts = load_parent_particles(clumpid, particle_archive, clumps_cat)
|
||||
parts = load_parent_particles(clumpid, particles, clump_map,
|
||||
clumps_cat)
|
||||
# If we have no particles, then do not save anything.
|
||||
if parts is None:
|
||||
continue
|
||||
|
|
|
@ -12,16 +12,18 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to load in the simulation particles and dump them to a HDF5 file for the
|
||||
SPH density field calculation.
|
||||
Script to load in the simulation particles and dump them to a HDF5 file.
|
||||
Creates a mapping to access directly particles of a single clump.
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
from distutils.util import strtobool
|
||||
from gc import collect
|
||||
|
||||
import h5py
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
|
@ -41,17 +43,23 @@ nproc = comm.Get_size()
|
|||
# And next parse all the arguments and set up CSiBORG objects
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||
help="IC realisatiosn. If `-1` processes all simulations.")
|
||||
parser.add_argument("--with_vel", type=lambda x: bool(strtobool(x)),
|
||||
help="Whether to include velocities in the particle file.")
|
||||
help="IC realisations. If `-1` processes all simulations.")
|
||||
parser.add_argument("--pos_only", type=lambda x: bool(strtobool(x)),
|
||||
help="Do we only dump positions?")
|
||||
parser.add_argument("--dtype", type=str, choices=["float32", "float64"],
|
||||
default="float32",)
|
||||
args = parser.parse_args()
|
||||
|
||||
verbose = nproc == 1
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
if args.with_vel:
|
||||
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
||||
else:
|
||||
|
||||
if args.pos_only:
|
||||
pars_extract = ['x', 'y', 'z', 'M']
|
||||
if args.ics is None or args.ics == -1:
|
||||
else:
|
||||
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
|
||||
|
||||
if args.ics is None or args.ics[0] == -1:
|
||||
ics = paths.get_ics(tonew=False)
|
||||
else:
|
||||
ics = args.ics
|
||||
|
@ -62,14 +70,49 @@ jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
|||
for i in jobs:
|
||||
nsim = ics[i]
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
print(f"{datetime.now()}: Rank {rank} completing simulation {nsim}.",
|
||||
print(f"{datetime.now()}: Rank {rank} loading particles {nsim}.",
|
||||
flush=True)
|
||||
|
||||
out = partreader.read_particle(
|
||||
nsnap, nsim, pars_extract, return_structured=False, verbose=nproc == 1)
|
||||
parts = partreader.read_particle(nsnap, nsim, pars_extract,
|
||||
return_structured=False, verbose=verbose)
|
||||
if args.dtype == "float64":
|
||||
parts = parts.astype(numpy.float64)
|
||||
|
||||
with h5py.File(paths.particle_h5py_path(nsim), "w") as f:
|
||||
dset = f.create_dataset("particles", data=out)
|
||||
kind = "pos" if args.pos_only else None
|
||||
|
||||
del out
|
||||
print(f"{datetime.now()}: Rank {rank} dumping particles from {nsim}.",
|
||||
flush=True)
|
||||
|
||||
with h5py.File(paths.particle_h5py_path(nsim, kind, args.dtype), "w") as f:
|
||||
f.create_dataset("particles", data=parts)
|
||||
del parts
|
||||
collect()
|
||||
print(f"{datetime.now()}: Rank {rank} finished dumping of {nsim}.",
|
||||
flush=True)
|
||||
# If we are dumping only particle positions, then we are done.
|
||||
if args.pos_only:
|
||||
continue
|
||||
|
||||
print(f"{datetime.now()}: Rank {rank} mapping particles from {nsim}.",
|
||||
flush=True)
|
||||
# If not, then load the clump IDs and prepare the memory mapping. We find
|
||||
# which array positions correspond to which clump IDs and save it. With
|
||||
# this we can then lazily load into memory the particles for each clump.
|
||||
part_cids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||
cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, load_fitted=False,
|
||||
rawdata=True)
|
||||
clumpinds = cat["index"]
|
||||
# Some of the clumps have no particles, so we do not loop over them
|
||||
clumpinds = clumpinds[numpy.isin(clumpinds, part_cids)]
|
||||
|
||||
out = {}
|
||||
for i, cid in enumerate(tqdm(clumpinds) if verbose else clumpinds):
|
||||
out.update({str(cid): numpy.where(part_cids == cid)[0]})
|
||||
|
||||
# We save the mapping to a HDF5 file
|
||||
with h5py.File(paths.particle_h5py_path(nsim, "clumpmap"), "w") as f:
|
||||
for cid, indxs in out.items():
|
||||
f.create_dataset(cid, data=indxs)
|
||||
|
||||
del part_cids, cat, clumpinds, out
|
||||
collect()
|
||||
|
|
|
@ -13,25 +13,20 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to calculate the particle centre of mass and Lagrangian patch size in
|
||||
the initial snapshot. Optinally dumps the particle files, however this requires
|
||||
a lot of memory.
|
||||
|
||||
TODO:
|
||||
- stop saving the particle IDs. Unnecessary.
|
||||
- Switch to h5py files. This way can save the positions in the particle
|
||||
array only.
|
||||
Script to calculate the particle centre of mass, Lagrangian patch size in the
|
||||
initial snapshot and the particle mapping.
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
from os.path import join
|
||||
from datetime import datetime
|
||||
from distutils.util import strtobool
|
||||
from gc import collect
|
||||
import joblib
|
||||
from os import remove
|
||||
from os.path import isfile, join
|
||||
|
||||
import h5py
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from tqdm import tqdm
|
||||
from tqdm import trange
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
|
@ -50,48 +45,80 @@ verbose = nproc == 1
|
|||
|
||||
# Argument parser
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--dump", type=lambda x: bool(strtobool(x)))
|
||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all simulations.")
|
||||
args = parser.parse_args()
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
ftemp = join(paths.temp_dumpdir, "initmatch_{}_{}_{}.npy")
|
||||
ftemp = lambda kind, nsim, rank: join(paths.temp_dumpdir, f"{kind}_{nsim}_{rank}.p") # noqa
|
||||
|
||||
# We loop over all particles and then use MPI when matching halos to the
|
||||
# initial snapshot and dumping them.
|
||||
for i, nsim in enumerate(paths.get_ics(tonew=True)):
|
||||
if args.ics is None or args.ics[0] == -1:
|
||||
ics = paths.get_ics(tonew=True)
|
||||
else:
|
||||
ics = args.ics
|
||||
|
||||
# We loop over simulations. Each simulation is then procesed with MPI, rank 0
|
||||
# loads the data and broadcasts it to other ranks.
|
||||
for nsim in ics:
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
if rank == 0:
|
||||
print(f"{datetime.now()}: reading simulation {nsim}.", flush=True)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
|
||||
# We first load particles in the initial and final snapshots and sort them
|
||||
# by their particle IDs so that we can match them by array position.
|
||||
# `clump_ids` are the clump IDs of particles.
|
||||
part0 = partreader.read_particle(1, nsim, ["x", "y", "z", "M", "ID"],
|
||||
verbose=verbose)
|
||||
part0 = part0[numpy.argsort(part0["ID"])]
|
||||
# We first load particles in the initial and final snapshots and sort
|
||||
# them by their particle IDs so that we can match them by array
|
||||
# position. `clump_ids` are the clump IDs of particles.
|
||||
part0 = partreader.read_particle(1, nsim, ["x", "y", "z", "M", "ID"],
|
||||
verbose=True,
|
||||
return_structured=False)
|
||||
part0 = part0[numpy.argsort(part0[:, -1])]
|
||||
part0 = part0[:, :-1] # Now we no longer need the particle IDs
|
||||
|
||||
pid = partreader.read_particle(nsnap, nsim, ["ID"], verbose=verbose)["ID"]
|
||||
clump_ids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||
clump_ids = clump_ids[numpy.argsort(pid)]
|
||||
# Release the particle IDs, we will not need them anymore now that both
|
||||
# particle arrays are matched in ordering.
|
||||
del pid
|
||||
collect()
|
||||
pid = partreader.read_particle(nsnap, nsim, ["ID"], verbose=True,
|
||||
return_structured=False).reshape(-1, )
|
||||
clump_ids = partreader.read_clumpid(nsnap, nsim, verbose=True)
|
||||
clump_ids = clump_ids[numpy.argsort(pid)]
|
||||
# Release the particle IDs, we will not need them anymore now that both
|
||||
# particle arrays are matched in ordering.
|
||||
del pid
|
||||
collect()
|
||||
|
||||
# Particles whose clump ID is 0 are unassigned to a clump, so we can get
|
||||
# rid of them to speed up subsequent operations. Again we release the mask.
|
||||
mask = clump_ids > 0
|
||||
clump_ids = clump_ids[mask]
|
||||
part0 = part0[mask]
|
||||
del mask
|
||||
collect()
|
||||
# Particles whose clump ID is 0 are unassigned to a clump, so we can
|
||||
# get rid of them to speed up subsequent operations. We will not need
|
||||
# these. Again we release the mask.
|
||||
mask = clump_ids > 0
|
||||
clump_ids = clump_ids[mask]
|
||||
part0 = part0[mask, :]
|
||||
del mask
|
||||
collect()
|
||||
|
||||
print(f"{datetime.now()}: dumping particles for {nsim}.", flush=True)
|
||||
with h5py.File(paths.initmatch_path(nsim, "particles"), "w") as f:
|
||||
f.create_dataset("particles", data=part0)
|
||||
|
||||
print(f"{datetime.now()}: broadcasting simulation {nsim}.", flush=True)
|
||||
# Stop all ranks and figure out array shapes from the 0th rank
|
||||
comm.Barrier()
|
||||
if rank == 0:
|
||||
shape = numpy.array([*part0.shape], dtype=numpy.int32)
|
||||
else:
|
||||
shape = numpy.empty(2, dtype=numpy.int32)
|
||||
comm.Bcast(shape, root=0)
|
||||
|
||||
# Now broadcast the particle arrays to all ranks
|
||||
if rank > 0:
|
||||
part0 = numpy.empty(shape, dtype=numpy.float32)
|
||||
clump_ids = numpy.empty(shape[0], dtype=numpy.int32)
|
||||
|
||||
comm.Bcast(part0, root=0)
|
||||
comm.Bcast(clump_ids, root=0)
|
||||
if rank == 0:
|
||||
print(f"{datetime.now()}: simulation {nsim} broadcasted.", flush=True)
|
||||
|
||||
# Calculate the centre of mass of each parent halo, the Lagrangian patch
|
||||
# size and optionally the initial snapshot particles belonging to this
|
||||
# parent halo. Dumping the particles will take majority of time.
|
||||
if rank == 0:
|
||||
print(f"{datetime.now()}: calculating {i}th simulation {nsim}.",
|
||||
flush=True)
|
||||
print(f"{datetime.now()}: calculating simulation {nsim}.", flush=True)
|
||||
# We load up the clump catalogue which contains information about the
|
||||
# ultimate parent halos of each clump. We will loop only over the clump
|
||||
# IDs of ultimate parent halos and add their substructure particles and at
|
||||
|
@ -99,13 +126,22 @@ for i, nsim in enumerate(paths.get_ics(tonew=True)):
|
|||
cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, load_fitted=False,
|
||||
rawdata=True)
|
||||
parent_ids = cat["index"][cat.ismain]
|
||||
parent_ids = parent_ids
|
||||
hid2arrpos = {indx: j for j, indx in enumerate(parent_ids)}
|
||||
# And we pre-allocate the output array for this simulation.
|
||||
dtype = {"names": ["index", "x", "y", "z", "lagpatch"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 4}
|
||||
# We MPI loop over the individual halos
|
||||
jobs = csiborgtools.fits.split_jobs(parent_ids.size, nproc)[rank]
|
||||
for i in tqdm(jobs) if verbose else jobs:
|
||||
clid = parent_ids[i]
|
||||
_out_fits = numpy.full(len(jobs), numpy.nan, dtype=dtype)
|
||||
_out_map = {}
|
||||
for i in trange(len(jobs)) if verbose else range(len(jobs)):
|
||||
clid = parent_ids[jobs[i]]
|
||||
_out_fits["index"][i] = clid
|
||||
mmain_indxs = cat["index"][cat["parent"] == clid]
|
||||
|
||||
mmain_mask = numpy.isin(clump_ids, mmain_indxs, assume_unique=True)
|
||||
mmain_particles = part0[mmain_mask]
|
||||
mmain_particles = part0[mmain_mask, :]
|
||||
# If the number of particles is too small, we skip this halo.
|
||||
if mmain_particles.size < 100:
|
||||
continue
|
||||
|
@ -113,65 +149,51 @@ for i, nsim in enumerate(paths.get_ics(tonew=True)):
|
|||
raddist, cmpos = csiborgtools.match.dist_centmass(mmain_particles)
|
||||
patchsize = csiborgtools.match.dist_percentile(raddist, [99],
|
||||
distmax=0.075)
|
||||
with open(ftemp.format(nsim, clid, "fit"), "wb") as f:
|
||||
numpy.savez(f, cmpos=cmpos, patchsize=patchsize)
|
||||
# Write the temporary results
|
||||
_out_fits["x"][i], _out_fits["y"][i], _out_fits["z"][i] = cmpos
|
||||
_out_fits["lagpatch"][i] = patchsize
|
||||
_out_map.update({str(clid): numpy.where(mmain_mask)[0]})
|
||||
|
||||
if args.dump:
|
||||
with open(ftemp.format(nsim, clid, "particles"), "wb") as f:
|
||||
numpy.save(f, mmain_particles)
|
||||
# Dump the results of this rank to a temporary file.
|
||||
joblib.dump(_out_fits, ftemp("fits", nsim, rank))
|
||||
joblib.dump(_out_map, ftemp("map", nsim, rank))
|
||||
|
||||
# We force clean up the memory before continuing.
|
||||
del part0, clump_ids
|
||||
del part0, clump_ids,
|
||||
collect()
|
||||
|
||||
# We now wait for all processes and then use the 0th process to collect
|
||||
# the results. We first collect just the Lagrangian patch size information.
|
||||
# Now we wait for all ranks, then collect the results and save it.
|
||||
comm.Barrier()
|
||||
if rank == 0:
|
||||
print(f"{datetime.now()}: collecting fits...", flush=True)
|
||||
dtype = {"names": ["index", "x", "y", "z", "lagpatch"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 4}
|
||||
out = numpy.full(parent_ids.size, numpy.nan, dtype=dtype)
|
||||
for i, clid in enumerate(parent_ids):
|
||||
fpath = ftemp.format(nsim, clid, "fit")
|
||||
# There is no file if the halo was skipped due to too few
|
||||
# particles.
|
||||
if not isfile(fpath):
|
||||
continue
|
||||
with open(fpath, "rb") as f:
|
||||
inp = numpy.load(f)
|
||||
out["index"][i] = clid
|
||||
out["x"][i] = inp["cmpos"][0]
|
||||
out["y"][i] = inp["cmpos"][1]
|
||||
out["z"][i] = inp["cmpos"][2]
|
||||
out["lagpatch"][i] = inp["patchsize"]
|
||||
remove(fpath)
|
||||
print(f"{datetime.now()}: collecting results for {nsim}.", flush=True)
|
||||
out_fits = numpy.full(parent_ids.size, numpy.nan, dtype=dtype)
|
||||
out_map = {}
|
||||
for i in range(nproc):
|
||||
# Merge the map dictionaries
|
||||
out_map = out_map | joblib.load(ftemp("map", nsim, i))
|
||||
# Now merge the structured arrays
|
||||
_out_fits = joblib.load(ftemp("fits", nsim, i))
|
||||
for j in range(_out_fits.size):
|
||||
k = hid2arrpos[_out_fits["index"][j]]
|
||||
for par in dtype["names"]:
|
||||
out_fits[par][k] = _out_fits[par][j]
|
||||
|
||||
fout = paths.initmatch_path(nsim, "fit")
|
||||
print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.save(f, out)
|
||||
remove(ftemp("fits", nsim, i))
|
||||
remove(ftemp("map", nsim, i))
|
||||
|
||||
# We now optionally collect the individual clumps and store them in an
|
||||
# archive, which has the benefit of being a single file that can be
|
||||
# easily read in.
|
||||
if args.dump:
|
||||
print(f"{datetime.now()}: collecting particles...", flush=True)
|
||||
out = {}
|
||||
for clid in parent_ids:
|
||||
fpath = ftemp.format(nsim, clid, "particles")
|
||||
if not isfile(fpath):
|
||||
continue
|
||||
with open(fpath, "rb") as f:
|
||||
out.update({str(clid): numpy.load(f)})
|
||||
remove(fpath)
|
||||
# Now save it
|
||||
fout_fit = paths.initmatch_path(nsim, "fit")
|
||||
print(f"{datetime.now()}: dumping fits to .. `{fout_fit}`.",
|
||||
flush=True)
|
||||
with open(fout_fit, "wb") as f:
|
||||
numpy.save(f, out_fits)
|
||||
|
||||
fout = paths.initmatch_path(nsim, "particles")
|
||||
print(f"{datetime.now()}: dumping particles to .. `{fout}`.",
|
||||
flush=True)
|
||||
with open(fout, "wb") as f:
|
||||
numpy.savez(f, **out)
|
||||
fout_map = paths.initmatch_path(nsim, "halomap")
|
||||
print(f"{datetime.now()}: dumping mapping to .. `{fout_map}`.",
|
||||
flush=True)
|
||||
with h5py.File(fout_map, "w") as f:
|
||||
for hid, indxs in out_map.items():
|
||||
f.create_dataset(hid, data=indxs)
|
||||
|
||||
# Again we force clean up the memory before continuing.
|
||||
del out
|
||||
collect()
|
||||
# We force clean up the memory before continuing.
|
||||
del out_map, out_fits
|
||||
collect()
|
||||
|
|
|
@ -1,118 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to split particles to individual files according to their clump. This is
|
||||
useful for calculating the halo properties directly from the particles.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
from glob import glob
|
||||
from os import remove
|
||||
from os.path import join
|
||||
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from taskmaster import master_process, worker_process
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
# Get MPI things
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
|
||||
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
||||
verbose = nproc == 1
|
||||
partcols = ["x", "y", "z", "vx", "vy", "vz", "M"]
|
||||
|
||||
|
||||
def do_split(nsim):
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
reader = csiborgtools.read.ParticleReader(paths)
|
||||
ftemp_base = join(
|
||||
paths.temp_dumpdir,
|
||||
"split_{}_{}".format(str(nsim).zfill(5), str(nsnap).zfill(5)),
|
||||
)
|
||||
ftemp = ftemp_base + "_{}.npz"
|
||||
|
||||
# Load the particles and their clump IDs
|
||||
particles = reader.read_particle(nsnap, nsim, partcols, verbose=verbose)
|
||||
particle_clumps = reader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||
# Drop all particles whose clump index is 0 (not assigned to any clump)
|
||||
assigned_mask = particle_clumps != 0
|
||||
particle_clumps = particle_clumps[assigned_mask]
|
||||
particles = particles[assigned_mask]
|
||||
del assigned_mask
|
||||
collect()
|
||||
|
||||
# Load the clump indices
|
||||
clumpinds = reader.read_clumps(nsnap, nsim, cols="index")["index"]
|
||||
# Some of the clumps have no particles, so we do not loop over them
|
||||
clumpinds = clumpinds[numpy.isin(clumpinds, particle_clumps)]
|
||||
|
||||
# Loop over the clump indices and save the particles to a temporary file
|
||||
# every 10000 clumps. We will later read this back and combine into a
|
||||
# single file.
|
||||
out = {}
|
||||
for i, clind in enumerate(tqdm(clumpinds) if verbose else clumpinds):
|
||||
key = str(clind)
|
||||
out.update({str(clind): particles[particle_clumps == clind]})
|
||||
|
||||
# REMOVE bump this back up
|
||||
if i % 10000 == 0 or i == clumpinds.size - 1:
|
||||
numpy.savez(ftemp.format(i), **out)
|
||||
out = {}
|
||||
|
||||
# Clear up memory because we will be loading everything back
|
||||
del particles, particle_clumps, clumpinds
|
||||
collect()
|
||||
|
||||
# Now load back in every temporary file, combine them into a single
|
||||
# dictionary and save as a single .npz file.
|
||||
out = {}
|
||||
for file in glob(ftemp_base + "*"):
|
||||
inp = numpy.load(file)
|
||||
for key in inp.files:
|
||||
out.update({key: inp[key]})
|
||||
remove(file)
|
||||
|
||||
numpy.savez(paths.split_path(nsnap, nsim), **out)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# MPI task delegation #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if nproc > 1:
|
||||
if rank == 0:
|
||||
tasks = list(paths.get_ics(tonew=False))
|
||||
master_process(tasks, comm, verbose=True)
|
||||
else:
|
||||
worker_process(do_split, comm, verbose=False)
|
||||
else:
|
||||
tasks = paths.get_ics(tonew=False)
|
||||
for task in tasks:
|
||||
print("{}: completing task `{}`.".format(datetime.now(), task))
|
||||
do_split(task)
|
||||
|
||||
comm.Barrier()
|
Loading…
Reference in a new issue