csiborgtools/scripts/match_singlematch.py

219 lines
8.7 KiB
Python
Raw Normal View History

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate overlap between two IC realisations of the same
2023-08-08 10:46:56 +00:00
simulation.
"""
from argparse import ArgumentParser
from copy import deepcopy
from datetime import datetime
from distutils.util import strtobool
import numpy
from scipy.ndimage import gaussian_filter
import csiborgtools
def pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose):
"""
Match a pair of simulations using the Max method.
Parameters
----------
nsim0, nsimx : int
The reference and cross simulation IC index.
simname : str
Simulation name.
min_logmass : float
Minimum log halo mass.
mult : float
Multiplicative factor for search radius.
verbose : bool
Verbosity flag.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if simname == "csiborg":
mass_kind = "fof_totpartmass"
maxdist = 155
periodic = False
bounds = {"dist": (0, maxdist), mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
nsim0, paths, bounds=bounds, load_fitted=True, load_initial=False)
catx = csiborgtools.read.CSiBORGHaloCatalogue(
nsimx, paths, bounds=bounds, load_fitted=True, load_initial=False)
elif simname == "quijote":
mass_kind = "group_mass"
maxdist = None
periodic = True
bounds = {mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
nsim0, paths, 4, bounds=bounds, load_fitted=True,
load_initial=False)
catx = csiborgtools.read.QuijoteHaloCatalogue(
nsimx, paths, 4, bounds=bounds, load_fitted=True,
load_initial=False)
else:
raise ValueError(f"Unknown simulation `{simname}`.")
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass,
maxdist=maxdist)
out = csiborgtools.match.matching_max(
cat0, catx, mass_kind, mult=mult, periodic=periodic,
overlap=reader.overlap(from_smoothed=True),
match_indxs=reader["match_indxs"], verbose=verbose)
fout = paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, **{p: out[p] for p in out.dtype.names})
2023-08-08 10:46:56 +00:00
def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
"""
Calculate overlaps between two simulations.
Parameters
----------
nsim0 : int
The reference simulation IC index.
nsimx : int
The cross simulation IC index.
simname : str
Simulation name.
2023-08-08 10:46:56 +00:00
min_logmass : float
Minimum log halo mass.
sigma : float
Smoothing scale in number of grid cells.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0}
if simname == "csiborg":
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 512}
mass_kind = "fof_totpartmass"
2023-08-08 10:46:56 +00:00
bounds = {"dist": (0, 155), mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
nsim0, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
catx = csiborgtools.read.CSiBORGHaloCatalogue(
nsimx, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
elif simname == "quijote":
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 256}
mass_kind = "group_mass"
2023-08-08 10:46:56 +00:00
bounds = {mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
nsim0, paths, 4, bounds=bounds, load_fitted=False,
with_lagpatch=True)
catx = csiborgtools.read.QuijoteHaloCatalogue(
nsimx, paths, 4, bounds=bounds, load_fitted=False,
with_lagpatch=True)
else:
raise ValueError(f"Unknown simulation name: `{simname}`.")
halomap0 = csiborgtools.read.read_h5(
paths.particles(nsim0, simname))["halomap"]
parts0 = csiborgtools.read.read_h5(
paths.initmatch(nsim0, simname, "particles"))["particles"]
hid2map0 = {hid: i for i, hid in enumerate(halomap0[:, 0])}
halomapx = csiborgtools.read.read_h5(
paths.particles(nsimx, simname))["halomap"]
partsx = csiborgtools.read.read_h5(
paths.initmatch(nsimx, simname, "particles"))["particles"]
hid2mapx = {hid: i for i, hid in enumerate(halomapx[:, 0])}
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
delta_bckg = overlapper.make_bckg_delta(parts0, halomap0, hid2map0, cat0,
verbose=verbose)
delta_bckg = overlapper.make_bckg_delta(partsx, halomapx, hid2mapx, catx,
delta=delta_bckg, verbose=verbose)
matcher = csiborgtools.match.RealisationsMatcher(
mass_kind=mass_kind, **overlapper_kwargs)
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
halomap0, halomapx, delta_bckg,
verbose=verbose)
# We want to store the halo IDs of the matches, not their array positions
# in the catalogues.
match_hids = deepcopy(match_indxs)
for i, matches in enumerate(match_indxs):
for j, match in enumerate(matches):
match_hids[i][j] = catx["index"][match]
2023-08-08 10:46:56 +00:00
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=False)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
ngp_overlap=ngp_overlap)
if not sigma > 0:
return
if verbose:
print(f"{datetime.now()}: smoothing the background field.", flush=True)
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
halomap0, halomapx, delta_bckg,
2023-05-09 16:43:18 +00:00
match_indxs, smooth_kwargs,
verbose=verbose)
2023-08-08 10:46:56 +00:00
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=True)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--kind", type=str, required=True,
choices=["overlap", "max"], help="Kind of matching.")
2023-08-08 10:46:56 +00:00
parser.add_argument("--nsim0", type=int, required=True,
help="Reference simulation IC index.")
2023-08-08 10:46:56 +00:00
parser.add_argument("--nsimx", type=int, required=True,
help="Cross simulation IC index.")
2023-08-08 10:46:56 +00:00
parser.add_argument("--simname", type=str, required=True,
help="Simulation name.")
parser.add_argument("--min_logmass", type=float, required=True,
help="Minimum log halo mass.")
parser.add_argument("--mult", type=float, default=5,
help="Search radius multiplier for Max's method.")
parser.add_argument("--sigma", type=float, default=0,
help="Smoothing scale in number of grid cells.")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False, help="Verbosity flag.")
args = parser.parse_args()
if args.kind == "overlap":
pair_match(args.nsim0, args.nsimx, args.simname, args.min_logmass,
args.sigma, args.verbose)
elif args.kind == "max":
pair_match_max(args.nsim0, args.nsimx, args.simname, args.min_logmass,
args.mult, args.verbose)
else:
raise ValueError(f"Unknown matching kind: `{args.kind}`.")