Add new ICs (#59)

* edit IC paths

* Remove import

* Edit path

* Change naming

* Add __main__

* Script to match everything

* Edit docs

* Remove test statement

* Move import

* Update nb
This commit is contained in:
Richard Stiskalek 2023-05-09 16:18:01 +01:00 committed by GitHub
parent ab8199be2c
commit b710b8e89c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 9536 additions and 134 deletions

View file

@ -16,5 +16,5 @@ from csiborgtools import clustering, field, fits, match, read # noqa
# Arguments to csiborgtools.read.CSiBORGPaths.
paths_glamdring = {"srcdir": "/mnt/extraspace/hdesmond/",
"postdir": "/mnt/extraspace/rstiskalek/csiborg/",
"postdir": "/mnt/extraspace/rstiskalek/CSiBORG/",
}

View file

@ -258,22 +258,22 @@ class PairOverlap:
in_initial : bool
Whether to calculate separation in the initial or final snapshot.
norm_kind : str, optional
The kind of normalisation to apply to the distances. Can be `r200`,
`ref_patch` or `sum_patch`.
The kind of normalisation to apply to the distances.
Can be `r200c`, `ref_patch` or `sum_patch`.
Returns
-------
dist : array of 1-dimensional arrays of shape `(nhalos, )`
"""
assert (norm_kind is None
or norm_kind in ("r200", "ref_patch", "sum_patch"))
or norm_kind in ("r200c", "ref_patch", "sum_patch"))
# Get positions either in the initial or final snapshot
pos0 = self.cat0().position(in_initial)
posx = self.catx().position(in_initial)
# Get the normalisation array if applicable
if norm_kind == "r200":
norm = self.cat0("r200")
if norm_kind == "r200c":
norm = self.cat0("r200c")
if norm_kind == "ref_patch":
norm = self.cat0("lagpatch")
if norm_kind == "sum_patch":

View file

@ -146,34 +146,25 @@ class CSiBORGPaths:
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
return join(fdir, f"{kind}_{str(nsim).zfill(5)}.{ftype}")
def get_ics(self, tonew):
def get_ics(self):
"""
Get CSiBORG IC realisation IDs from the list of folders in
`self.srcdir`.
Parameters
----------
tonew : bool
If `True`, path to the '_new' ICs is returned.
Returns
-------
ids : 1-dimensional array
"""
files = glob(join(self.srcdir, "ramses_out*"))
files = [f.split("/")[-1] for f in files] # Select only file names
if tonew:
files = [f for f in files if "_new" in f]
ids = [int(f.split("_")[2]) for f in files] # Take the IC IDs
else:
files = [f for f in files if "_inv" not in f] # Remove inv. ICs
files = [f for f in files if "_new" not in f] # Remove _new
files = [f for f in files if "OLD" not in f] # Remove _old
ids = [int(f.split("_")[-1]) for f in files]
try:
ids.remove(5511)
except ValueError:
pass
files = [f.split("/")[-1] for f in files] # Select only file names
files = [f for f in files if "_inv" not in f] # Remove inv. ICs
files = [f for f in files if "_new" not in f] # Remove _new
files = [f for f in files if "OLD" not in f] # Remove _old
ids = [int(f.split("_")[-1]) for f in files]
try:
ids.remove(5511)
except ValueError:
pass
return numpy.sort(ids)
def ic_path(self, nsim, tonew=False):
@ -194,6 +185,8 @@ class CSiBORGPaths:
fname = "ramses_out_{}"
if tonew:
fname += "_new"
return join(self.postdir, "output", fname.format(nsim))
return join(self.srcdir, fname.format(nsim))
def get_snapshots(self, nsim):

View file

@ -24,7 +24,7 @@ class PKReader:
Parameters
----------
get_ics : list of int
ics : list of int
IC IDs to be read.
hw : float
Box half-width.
@ -35,8 +35,8 @@ class PKReader:
dtype : dtype, optional
Output precision. By default `numpy.float32`.
"""
def __init__(self, get_ics, hw, fskel=None, dtype=numpy.float32):
self.get_ics = get_ics
def __init__(self, ics, hw, fskel=None, dtype=numpy.float32):
self.ics= ics
self.hw = hw
if fskel is None:
fskel = "/mnt/extraspace/rstiskalek/csiborg/crosspk/out_{}_{}_{}.p"
@ -69,19 +69,19 @@ class PKReader:
-------
ks : 1-dimensional array
Array of wavenumbers.
pks : 2-dimensional array of shape `(len(self.get_ics), ks.size)`
pks : 2-dimensional array of shape `(len(self.ics), ks.size)`
Autocorrelation of each simulation.
"""
kmin, kmax = self._set_klim(kmin, kmax)
ks, pks, sel = None, None, None
for i, nsim in enumerate(self.get_ics):
for i, nsim in enumerate(self.ics):
pk = joblib.load(self.fskel.format(nsim, nsim, self.hw))
# Get cuts and pre-allocate arrays
if i == 0:
x = pk.k3D
sel = (kmin < x) & (x < kmax)
ks = x[sel].astype(self.dtype)
pks = numpy.full((len(self.get_ics), numpy.sum(sel)),
pks = numpy.full((len(self.ics), numpy.sum(sel)),
numpy.nan, dtype=self.dtype)
pks[i, :] = pk.Pk[sel, 0, 0]
@ -144,12 +144,12 @@ class PKReader:
Cross-correlations. The first column is the the IC and is being
cross-correlated with the remaining ICs, in the second column.
"""
nics = len(self.get_ics)
nics = len(self.ics)
ks, xpks = None, None
for i, ic0 in enumerate(tqdm(self.get_ics)):
for i, ic0 in enumerate(tqdm(self.ics)):
k = 0
for ic1 in self.get_ics:
for ic1 in self.ics:
# We don't want cross-correlation
if ic0 == ic1:
continue

File diff suppressed because one or more lines are too long

View file

@ -51,7 +51,7 @@ MAS = "CIC" # mass asignment scheme
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
box = csiborgtools.read.BoxUnits(paths)
reader = csiborgtools.read.ParticleReader(paths)
ics = paths.get_ics(tonew=False)
ics = paths.get_ics()
nsims = len(ics)
# File paths

View file

@ -50,7 +50,7 @@ with open("../scripts/knn_auto.yml", "r") as file:
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
totvol = 4 * numpy.pi * Rmax**3 / 3
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
ics = paths.get_ics(False)
ics = paths.get_ics()
knncdf = csiborgtools.clustering.kNN_CDF()
###############################################################################

View file

@ -49,7 +49,7 @@ with open("../scripts/knn_cross.yml", "r") as file:
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
ics = paths.get_ics(False)
ics = paths.get_ics()
knncdf = csiborgtools.clustering.kNN_CDF()
###############################################################################

View file

@ -48,7 +48,7 @@ with open("../scripts/tpcf_auto.yml", "r") as file:
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
paths = csiborgtools.read.CSiBORGPaths()
ics = paths.get_ics(False)
ics = paths.get_ics()
tpcf = csiborgtools.clustering.Mock2PCF()
###############################################################################

View file

@ -46,7 +46,7 @@ args = parser.parse_args()
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics(tonew=False)
ics = paths.get_ics()
else:
ics = args.ics

View file

@ -47,7 +47,7 @@ partreader = csiborgtools.read.ParticleReader(paths)
nfwpost = csiborgtools.fits.NFWPosterior()
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics(tonew=False)
ics = paths.get_ics()
else:
ics = args.ics

View file

@ -49,7 +49,7 @@ paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
partreader = csiborgtools.read.ParticleReader(paths)
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics(tonew=True)
ics = paths.get_ics()
else:
ics = args.ics

View file

@ -20,7 +20,6 @@ from argparse import ArgumentParser
from datetime import datetime
from gc import collect
import h5py
import numpy
from mpi4py import MPI
from tqdm import trange
@ -49,7 +48,7 @@ if nproc > 1:
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
cols_collect = [("r", numpy.float32), ("M", numpy.float32)]
if args.ics is None or args.ics == -1:
nsims = paths.get_ics(tonew=False)
nsims = paths.get_ics()
else:
nsims = args.ics

79
scripts/match_all.py Normal file
View file

@ -0,0 +1,79 @@
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to match all pairs of CSiBORG simulations. Mathches main haloes whose
mass is above 1e12 solar masses.
"""
from argparse import ArgumentParser
from datetime import datetime
from distutils.util import strtobool
from itertools import combinations
from random import Random
from mpi4py import MPI
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
from taskmaster import master_process, worker_process
from match_singlematch import pair_match
# Argument parser
parser = ArgumentParser()
parser.add_argument("--sigma", type=float, default=None)
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
default=None)
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
args = parser.parse_args()
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
nproc = comm.Get_size()
def get_combs():
"""
Get the list of all pairs of simulations, then permute them with a known
seed to minimise loading the same files simultaneously.
"""
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
ics = paths.get_ics()
combs = list(combinations(ics, 2))
Random(42).shuffle(combs)
return combs
def do_work(comb):
nsim0, nsimx = comb
pair_match(nsim0, nsimx, args.sigma, args.smoothen, args.verbose)
if nproc > 1:
if rank == 0:
combs = get_combs()
master_process(combs, comm, verbose=True)
else:
worker_process(do_work, comm, verbose=False)
else:
combs = get_combs()
for comb in combs:
print(f"{datetime.now()}: completing task `{comb}`.", flush=True)
do_work(comb)

View file

@ -27,88 +27,94 @@ except ModuleNotFoundError:
sys.path.append("../")
import csiborgtools
def pair_match(nsim0, nsimx, sigma, smoothen, verbose):
from csiborgtools.read import HaloCatalogue, read_h5
# Argument parser
parser = ArgumentParser()
parser.add_argument("--nsim0", type=int)
parser.add_argument("--nsimx", type=int)
parser.add_argument("--nmult", type=float)
parser.add_argument("--sigma", type=float, default=None)
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
default=None)
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
args = parser.parse_args()
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
smooth_kwargs = {"sigma": args.sigma, "mode": "constant", "cval": 0.0}
overlapper = csiborgtools.match.ParticleOverlap()
matcher = csiborgtools.match.RealisationsMatcher()
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0.0}
overlapper = csiborgtools.match.ParticleOverlap()
matcher = csiborgtools.match.RealisationsMatcher()
# Load the raw catalogues (i.e. no selection) including the initial CM
# positions and the particle archives.
cat0 = HaloCatalogue(args.nsim0, paths, load_initial=True,
minmass=("totpartmass", 1e12), with_lagpatch=True,
load_clumps_cat=True)
catx = HaloCatalogue(args.nsimx, paths, load_initial=True,
minmass=("totpartmass", 1e12), with_lagpatch=True,
load_clumps_cat=True)
# Load the raw catalogues (i.e. no selection) including the initial CM
# positions and the particle archives.
cat0 = HaloCatalogue(nsim0, paths, load_initial=True,
minmass=("totpartmass", 1e12), with_lagpatch=True,
load_clumps_cat=True)
catx = HaloCatalogue(nsimx, paths, load_initial=True,
minmass=("totpartmass", 1e12), with_lagpatch=True,
load_clumps_cat=True)
clumpmap0 = read_h5(paths.particles_path(args.nsim0))["clumpmap"]
parts0 = read_h5(paths.initmatch_path(args.nsim0, "particles"))["particles"]
clid2map0 = {clid: i for i, clid in enumerate(clumpmap0[:, 0])}
clumpmap0 = read_h5(paths.particles_path(nsim0))["clumpmap"]
parts0 = read_h5(paths.initmatch_path(nsim0, "particles"))["particles"]
clid2map0 = {clid: i for i, clid in enumerate(clumpmap0[:, 0])}
clumpmapx = read_h5(paths.particles_path(args.nsimx))["clumpmap"]
partsx = read_h5(paths.initmatch_path(args.nsimx, "particles"))["particles"]
clid2mapx = {clid: i for i, clid in enumerate(clumpmapx[:, 0])}
clumpmapx = read_h5(paths.particles_path(nsimx))["clumpmap"]
partsx = read_h5(paths.initmatch_path(nsimx, "particles"))["particles"]
clid2mapx = {clid: i for i, clid in enumerate(clumpmapx[:, 0])}
# We generate the background density fields. Loads halos's particles one by
# one from the archive, concatenates them and calculates the NGP density
# field.
if verbose:
print(f"{datetime.now()}: generating the background density fields.",
flush=True)
delta_bckg = overlapper.make_bckg_delta(parts0, clumpmap0, clid2map0, cat0,
verbose=verbose)
delta_bckg = overlapper.make_bckg_delta(partsx, clumpmapx, clid2mapx, catx,
delta=delta_bckg, verbose=verbose)
# We calculate the overlap between the NGP fields.
if verbose:
print(f"{datetime.now()}: crossing the simulations.", flush=True)
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
clumpmap0, clumpmapx, delta_bckg,
verbose=verbose)
# We wish to store the halo IDs of the matches, not their array positions
# in the catalogues
match_hids = deepcopy(match_indxs)
for i, matches in enumerate(match_indxs):
for j, match in enumerate(matches):
match_hids[i][j] = catx["index"][match]
fout = paths.overlap_path(nsim0, nsimx, smoothed=False)
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
ngp_overlap=ngp_overlap)
if verbose:
print(f"{datetime.now()}: calculated NGP overlap, saved to {fout}.",
flush=True)
if not smoothen:
quit()
# We now smoothen up the background density field for the smoothed overlap
# calculation.
if verbose:
print(f"{datetime.now()}: smoothing the background field.", flush=True)
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
clumpmap0, clumpmapx, delta_bckg,
match_indxs, smooth_kwargs)
fout = paths.overlap_path(nsim0, nsimx, smoothed=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
if verbose:
print(f"{datetime.now()}: calculated smoothing, saved to {fout}.",
flush=True)
# We generate the background density fields. Loads halos's particles one by one
# from the archive, concatenates them and calculates the NGP density field.
if args.verbose:
print(f"{datetime.now()}: generating the background density fields.",
flush=True)
delta_bckg = overlapper.make_bckg_delta(parts0, clumpmap0, clid2map0, cat0,
verbose=args.verbose)
delta_bckg = overlapper.make_bckg_delta(partsx, clumpmapx, clid2mapx, catx,
delta=delta_bckg, verbose=args.verbose)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsim0", type=int)
parser.add_argument("--nsimx", type=int)
parser.add_argument("--sigma", type=float, default=None)
parser.add_argument("--smoothen", type=lambda x: bool(strtobool(x)),
default=None)
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
args = parser.parse_args()
# We calculate the overlap between the NGP fields.
if args.verbose:
print(f"{datetime.now()}: crossing the simulations.", flush=True)
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx, clumpmap0,
clumpmapx, delta_bckg,
verbose=args.verbose)
# We wish to store the halo IDs of the matches, not their array positions in
# the catalogues
match_hids = deepcopy(match_indxs)
for i, matches in enumerate(match_indxs):
for j, match in enumerate(matches):
match_hids[i][j] = catx["index"][match]
fout = paths.overlap_path(args.nsim0, args.nsimx, smoothed=False)
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
ngp_overlap=ngp_overlap)
if args.verbose:
print(f"{datetime.now()}: calculated NGP overlap, saved to {fout}.",
flush=True)
if not args.smoothen:
quit()
# We now smoothen up the background density field for the smoothed overlap
# calculation.
if args.verbose:
print(f"{datetime.now()}: smoothing the background field.", flush=True)
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
clumpmap0, clumpmapx, delta_bckg,
match_indxs, smooth_kwargs)
fout = paths.overlap_path(args.nsim0, args.nsimx, smoothed=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=args.sigma)
if args.verbose:
print(f"{datetime.now()}: calculated smoothed overlap, saved to {fout}.",
flush=True)
pair_match(args.nsim0, args.nsimx, args.sigma, args.smoothen, args.verbose)

View file

@ -55,7 +55,7 @@ partreader = csiborgtools.read.ParticleReader(paths)
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics(tonew=False)
ics = paths.get_ics()
else:
ics = args.ics

View file

@ -51,12 +51,12 @@ def do_mmain(nsim):
if nproc > 1:
if rank == 0:
tasks = list(paths.get_ics(tonew=False))
tasks = list(paths.get_ics())
master_process(tasks, comm, verbose=True)
else:
worker_process(do_mmain, comm, verbose=False)
else:
tasks = paths.get_ics(tonew=False)
tasks = paths.get_ics()
for task in tasks:
print(f"{datetime.now()}: completing task `{task}`.", flush=True)
do_mmain(task)

View file

@ -50,7 +50,7 @@ partreader = csiborgtools.read.ParticleReader(paths)
pars_extract = ["x", "y", "z", "M", "ID"]
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics(tonew=True)
ics = paths.get_ics()
else:
ics = args.ics