mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 04:28:01 +00:00
183 lines
6.6 KiB
Python
183 lines
6.6 KiB
Python
|
# Copyright (C) 2022 Richard Stiskalek
|
||
|
# This program is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU General Public License as published by the
|
||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||
|
# option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful, but
|
||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||
|
# Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License along
|
||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
"""A script to calculate the KNN-CDF for a set of CSiBORG halo catalogues."""
|
||
|
from os.path import join
|
||
|
from warnings import warn
|
||
|
from argparse import ArgumentParser
|
||
|
from copy import deepcopy
|
||
|
from datetime import datetime
|
||
|
from mpi4py import MPI
|
||
|
from TaskmasterMPI import master_process, worker_process
|
||
|
import numpy
|
||
|
from sklearn.neighbors import NearestNeighbors
|
||
|
import joblib
|
||
|
import yaml
|
||
|
try:
|
||
|
import csiborgtools
|
||
|
except ModuleNotFoundError:
|
||
|
import sys
|
||
|
sys.path.append("../")
|
||
|
import csiborgtools
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# MPI and arguments #
|
||
|
###############################################################################
|
||
|
comm = MPI.COMM_WORLD
|
||
|
rank = comm.Get_rank()
|
||
|
nproc = comm.Get_size()
|
||
|
|
||
|
parser = ArgumentParser()
|
||
|
parser.add_argument("--runs", type=str, nargs="+")
|
||
|
args = parser.parse_args()
|
||
|
with open('../scripts/knn_auto.yml', 'r') as file:
|
||
|
config = yaml.safe_load(file)
|
||
|
|
||
|
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
|
||
|
totvol = 4 * numpy.pi * Rmax**3 / 3
|
||
|
minmass = 1e12
|
||
|
ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
|
||
|
7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,
|
||
|
7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,
|
||
|
8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,
|
||
|
8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,
|
||
|
8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,
|
||
|
9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,
|
||
|
9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,
|
||
|
9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
|
||
|
9820, 9844]
|
||
|
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn"
|
||
|
fout = join(dumpdir, "auto", "knncdf_{}_{}.p")
|
||
|
paths = csiborgtools.read.CSiBORGPaths()
|
||
|
knncdf = csiborgtools.clustering.kNN_CDF()
|
||
|
|
||
|
###############################################################################
|
||
|
# Analysis #
|
||
|
###############################################################################
|
||
|
|
||
|
def read_single(selection, cat):
|
||
|
"""Positions for single catalogue auto-correlation."""
|
||
|
mmask = numpy.ones(len(cat), dtype=bool)
|
||
|
pos = cat.positions(False)
|
||
|
# Primary selection
|
||
|
psel = selection["primary"]
|
||
|
pmin, pmax = psel.get("min", None), psel.get("max", None)
|
||
|
if pmin is not None:
|
||
|
mmask &= (cat[psel["name"]] >= pmin)
|
||
|
if pmax is not None:
|
||
|
mmask &= (cat[psel["name"]] < pmax)
|
||
|
pos = pos[mmask, ...]
|
||
|
|
||
|
# Secondary selection
|
||
|
if "secondary" not in selection:
|
||
|
return pos
|
||
|
smask = numpy.ones(pos.shape[0], dtype=bool)
|
||
|
ssel = selection["secondary"]
|
||
|
smin, smax = ssel.get("min", None), ssel.get("max", None)
|
||
|
prop = cat[ssel["name"]][mmask]
|
||
|
if ssel.get("toperm", False):
|
||
|
prop = numpy.random.permutation(prop)
|
||
|
if ssel.get("marked", True):
|
||
|
x = cat[psel["name"]][mmask]
|
||
|
prop = csiborgtools.clustering.normalised_marks(
|
||
|
x, prop, nbins=config["nbins_marks"])
|
||
|
|
||
|
if smin is not None:
|
||
|
smask &= (prop >= smin)
|
||
|
if smax is not None:
|
||
|
smask &= (prop < smax)
|
||
|
|
||
|
return pos[smask, ...]
|
||
|
|
||
|
def do_auto(run, cat, ic):
|
||
|
"""Calculate the kNN-CDF single catalgoue autocorrelation."""
|
||
|
_config = config.get(run, None)
|
||
|
if _config is None:
|
||
|
warn("No configuration for run {}.".format(run))
|
||
|
return
|
||
|
|
||
|
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
|
||
|
pos = read_single(_config, cat)
|
||
|
knn = NearestNeighbors()
|
||
|
knn.fit(pos)
|
||
|
rs, cdf = knncdf(
|
||
|
knn, rvs_gen=rvs_gen, nneighbours=config["nneighbours"],
|
||
|
rmin=config["rmin"], rmax=config["rmax"],
|
||
|
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
|
||
|
batch_size=int(config["batch_size"]), random_state=config["seed"])
|
||
|
|
||
|
joblib.dump({"rs": rs, "cdf": cdf, "ndensity": pos.shape[0] / totvol},
|
||
|
fout.format(str(ic).zfill(5), run))
|
||
|
|
||
|
def do_cross_rand(run, cat, ic):
|
||
|
"""Calculate the kNN-CDF cross catalogue random correlation."""
|
||
|
_config = config.get(run, None)
|
||
|
if _config is None:
|
||
|
warn("No configuration for run {}.".format(run))
|
||
|
return
|
||
|
|
||
|
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
|
||
|
knn1, knn2 = NearestNeighbors(), NearestNeighbors()
|
||
|
|
||
|
pos1 = read_single(_config, cat)
|
||
|
knn1.fit(pos1)
|
||
|
|
||
|
pos2 = rvs_gen(pos1.shape[0])
|
||
|
knn2.fit(pos2)
|
||
|
|
||
|
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
|
||
|
knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]),
|
||
|
rmin=config["rmin"], rmax=config["rmax"],
|
||
|
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
|
||
|
batch_size=int(config["batch_size"]), random_state=config["seed"])
|
||
|
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
|
||
|
|
||
|
joblib.dump({"rs": rs, "corr": corr}, fout.format(str(ic).zfill(5), run))
|
||
|
|
||
|
|
||
|
|
||
|
def do_runs(ic):
|
||
|
cat = csiborgtools.read.HaloCatalogue(ic, paths, max_dist=Rmax,
|
||
|
min_mass=minmass)
|
||
|
for run in args.runs:
|
||
|
if "random" in run:
|
||
|
do_cross_rand(run, cat, ic)
|
||
|
else:
|
||
|
do_auto(run, cat, ic)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# MPI task delegation #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
if nproc > 1:
|
||
|
if rank == 0:
|
||
|
tasks = deepcopy(ics)
|
||
|
master_process(tasks, comm, verbose=True)
|
||
|
else:
|
||
|
worker_process(do_runs, comm, verbose=False)
|
||
|
else:
|
||
|
tasks = deepcopy(ics)
|
||
|
for task in tasks:
|
||
|
print("{}: completing task `{}`.".format(datetime.now(), task))
|
||
|
do_runs(task)
|
||
|
comm.Barrier()
|
||
|
|
||
|
|
||
|
if rank == 0:
|
||
|
print("{}: all finished.".format(datetime.now()))
|
||
|
quit() # Force quit the script
|