forked from guilhem_lavaux/JaxPM
130 lines
4.6 KiB
Python
130 lines
4.6 KiB
Python
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def plot_fields(fields_dict, sum_over=None):
|
||
|
"""
|
||
|
Plots sum projections of 3D fields along different axes,
|
||
|
slicing only the first `sum_over` elements along each axis.
|
||
|
|
||
|
Args:
|
||
|
- fields: list of 3D arrays representing fields to plot
|
||
|
- names: list of names for each field, used in titles
|
||
|
- sum_over: number of slices to sum along each axis (default: fields[0].shape[0] // 8)
|
||
|
"""
|
||
|
sum_over = sum_over or list(fields_dict.values())[0].shape[0] // 8
|
||
|
nb_rows = len(fields_dict)
|
||
|
nb_cols = 3
|
||
|
fig, axes = plt.subplots(nb_rows, nb_cols, figsize=(15, 5 * nb_rows))
|
||
|
|
||
|
def plot_subplots(proj_axis, field, row, title):
|
||
|
slicing = [slice(None)] * field.ndim
|
||
|
slicing[proj_axis] = slice(None, sum_over)
|
||
|
slicing = tuple(slicing)
|
||
|
|
||
|
# Sum projection over the specified axis and plot
|
||
|
axes[row, proj_axis].imshow(
|
||
|
field[slicing].sum(axis=proj_axis) + 1,
|
||
|
cmap='magma',
|
||
|
extent=[0, field.shape[proj_axis], 0, field.shape[proj_axis]])
|
||
|
axes[row, proj_axis].set_xlabel('Mpc/h')
|
||
|
axes[row, proj_axis].set_ylabel('Mpc/h')
|
||
|
axes[row, proj_axis].set_title(title)
|
||
|
|
||
|
# Plot each field across the three axes
|
||
|
for i, (name, field) in enumerate(fields_dict.items()):
|
||
|
for proj_axis in range(3):
|
||
|
plot_subplots(proj_axis, field, i,
|
||
|
f"{name} projection {proj_axis}")
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def plot_fields_single_projection(fields_dict,
|
||
|
sum_over=None,
|
||
|
project_axis=0,
|
||
|
vmin=None,
|
||
|
vmax=None,
|
||
|
colorbar=False):
|
||
|
"""
|
||
|
Plots a single projection (along axis 0) of 3D fields in a grid,
|
||
|
summing over the first `sum_over` elements along the 0-axis, with 4 images per row.
|
||
|
|
||
|
Args:
|
||
|
- fields_dict: dictionary where keys are field names and values are 3D arrays
|
||
|
- sum_over: number of slices to sum along the projection axis (default: fields[0].shape[0] // 8)
|
||
|
"""
|
||
|
sum_over = sum_over or list(fields_dict.values())[0].shape[0] // 8
|
||
|
nb_fields = len(fields_dict)
|
||
|
nb_cols = 4 # Set number of images per row
|
||
|
nb_rows = (nb_fields + nb_cols - 1) // nb_cols # Calculate required rows
|
||
|
|
||
|
fig, axes = plt.subplots(nb_rows,
|
||
|
nb_cols,
|
||
|
figsize=(5 * nb_cols, 5 * nb_rows))
|
||
|
axes = np.atleast_2d(axes) # Ensure axes is always a 2D array
|
||
|
|
||
|
for i, (name, field) in enumerate(fields_dict.items()):
|
||
|
row, col = divmod(i, nb_cols)
|
||
|
|
||
|
# Define the slice for the 0-axis projection
|
||
|
slicing = [slice(None)] * field.ndim
|
||
|
slicing[project_axis] = slice(None, sum_over)
|
||
|
slicing = tuple(slicing)
|
||
|
|
||
|
# Sum projection over axis 0 and plot
|
||
|
a = axes[row,
|
||
|
col].imshow(field[slicing].sum(axis=project_axis) + 1,
|
||
|
cmap='magma',
|
||
|
extent=[0, field.shape[1], 0, field.shape[2]],
|
||
|
vmin=vmin,
|
||
|
vmax=vmax)
|
||
|
axes[row, col].set_xlabel('Mpc/h')
|
||
|
axes[row, col].set_ylabel('Mpc/h')
|
||
|
axes[row, col].set_title(f"{name} projection 0")
|
||
|
if colorbar:
|
||
|
fig.colorbar(a, ax=axes[row, col], shrink=0.7)
|
||
|
|
||
|
# Remove any empty subplots
|
||
|
for j in range(i + 1, nb_rows * nb_cols):
|
||
|
fig.delaxes(axes.flatten()[j])
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def stack_slices(array):
|
||
|
"""
|
||
|
Stacks 2D slices of an array into a single array based on provided partition dimensions.
|
||
|
|
||
|
Args:
|
||
|
- array_slices: a 2D list of array slices (list of lists format) where
|
||
|
array_slices[i][j] is the slice located at row i, column j in the grid.
|
||
|
- pdims: a tuple representing the grid dimensions (rows, columns).
|
||
|
|
||
|
Returns:
|
||
|
- A single array constructed by stacking the slices.
|
||
|
"""
|
||
|
# Initialize an empty list to store the vertically stacked rows
|
||
|
pdims = array.sharding.mesh.devices.shape
|
||
|
|
||
|
field_slices = []
|
||
|
|
||
|
# Iterate over rows in pdims[0]
|
||
|
for i in range(pdims[0]):
|
||
|
row_slices = []
|
||
|
|
||
|
# Iterate over columns in pdims[1]
|
||
|
for j in range(pdims[1]):
|
||
|
slice_index = i * pdims[0] + j
|
||
|
row_slices.append(array.addressable_data(slice_index))
|
||
|
# Stack the current row of slices vertically
|
||
|
stacked_row = np.hstack(row_slices)
|
||
|
field_slices.append(stacked_row)
|
||
|
|
||
|
# Stack all rows horizontally to form the full array
|
||
|
full_array = np.vstack(field_slices)
|
||
|
|
||
|
return full_array
|