JaxPM_highres/jaxpm/kernels.py
denise lanzieri 6b6b414195 PGD
2022-05-17 15:28:30 +02:00

126 lines
No EOL
2.8 KiB
Python

import numpy as np
import jax.numpy as jnp
def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
""" Return k_vector given a shape (nc, nc, nc) and box_size
"""
k = []
for d in range(len(shape)):
kd = np.fft.fftfreq(shape[d])
kd *= 2 * np.pi
kdshape = np.ones(len(shape), dtype='int')
if symmetric and d == len(shape) - 1:
kd = kd[:shape[d] // 2 + 1]
kdshape[d] = len(kd)
kd = kd.reshape(kdshape)
k.append(kd.astype(dtype))
del kd, kdshape
return k
def gradient_kernel(kvec, direction, order=1):
"""
Computes the gradient kernel in the requested direction
Parameters:
-----------
kvec: array
Array of k values in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns:
--------
wts: array
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
mask = (kk == 0).nonzero()
kk[mask] = 1
wts = 1. / kk
imask = (~(kk == 0)).astype(int)
wts *= imask
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.
def cic_compensation(kvec):
"""
Computes cic compensation kernel.
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
Itself based on equation 18 (with p=2) of
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
Args:
kvec: array of k values in Fourier space
Returns:
v: array of kernel
"""
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
return wts
def PGD_kernel(kvec, kl, ks):
"""
Computes the PGD kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
kl: float
initial long range scale parameter
ks: float
initial dhort range scale parameter
Returns:
--------
v: array
kernel
"""
kk = sum(ki**2 for ki in kvec)
kl2 = kl**2
ks4 = ks**4
mask = (kk == 0).nonzero()
kk[mask] = 1
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
imask = (~(kk == 0)).astype(int)
v *= imask
return v