import jax.numpy as jnp import numpy as np def fftk(shape, symmetric=True, finite=False, dtype=np.float32): """ Return wave-vectors for a given shape """ k = [] for d in range(len(shape)): kd = np.fft.fftfreq(shape[d]) kd *= 2 * np.pi kdshape = np.ones(len(shape), dtype='int') if symmetric and d == len(shape) - 1: kd = kd[:shape[d] // 2 + 1] kdshape[d] = len(kd) kd = kd.reshape(kdshape) k.append(kd.astype(dtype)) del kd, kdshape return k def gradient_kernel(kvec, direction, order=1): """ Computes the gradient kernel in the requested direction Parameters ----------- kvec: list List of wave-vectors in Fourier space direction: int Index of the direction in which to take the gradient Returns -------- wts: array Complex kernel values """ if order == 0: wts = 1j * kvec[direction] wts = jnp.squeeze(wts) wts[len(wts) // 2] = 0 wts = wts.reshape(kvec[direction].shape) return wts else: w = kvec[direction] a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w)) wts = a * 1j return wts def invlaplace_kernel(kvec): """ Compute the inverse Laplace kernel Parameters ----------- kvec: list List of wave-vectors Returns -------- wts: array Complex kernel values """ kk = sum(ki**2 for ki in kvec) kk_nozeros = jnp.where(kk==0, 1, kk) return - jnp.where(kk==0, 0, 1 / kk_nozeros) def longrange_kernel(kvec, r_split): """ Computes a long range kernel Parameters ----------- kvec: list List of wave-vectors r_split: float Splitting radius Returns -------- wts: array Complex kernel values TODO: @modichirag add documentation """ if r_split != 0: kk = sum(ki**2 for ki in kvec) return np.exp(-kk * r_split**2) else: return 1. def cic_compensation(kvec): """ Computes cic compensation kernel. Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499 Itself based on equation 18 (with p=2) of [Jing et al 2005](https://arxiv.org/abs/astro-ph/0409240) Parameters: ----------- kvec: list List of wave-vectors Returns: -------- wts: array Complex kernel values """ kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)] wts = (kwts[0] * kwts[1] * kwts[2])**(-2) return wts def PGD_kernel(kvec, kl, ks): """ Computes the PGD kernel Parameters: ----------- kvec: list List of wave-vectors kl: float Initial long range scale parameter ks: float Initial dhort range scale parameter Returns: -------- v: array Complex kernel values """ kk = sum(ki**2 for ki in kvec) kl2 = kl**2 ks4 = ks**4 mask = (kk == 0).nonzero() kk[mask] = 1 v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4) imask = (~(kk == 0)).astype(int) v *= imask return v