import jax import pytest from diffrax import (BacksolveAdjoint, Dopri5, ODETerm, PIDController, RecursiveCheckpointAdjoint, SaveAt, diffeqsolve) from helpers import MSE from jax import numpy as jnp from jaxpm.distributed import uniform_particles from jaxpm.painting import cic_paint, cic_paint_dx from jaxpm.pm import lpt, make_diffrax_ode @pytest.mark.single_device @pytest.mark.parametrize("order", [1, 2]) @pytest.mark.parametrize("absolute_painting", [True, False]) @pytest.mark.parametrize("adjoint", ['DTO', 'OTD']) def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor, nbody_from_lpt1, nbody_from_lpt2, cosmo, order, absolute_painting, adjoint): mesh_shape, _ = simulation_config cosmo._workspace = {} if adjoint == 'OTD': pytest.skip("OTD adjoint not implemented yet (needs PFFT3D JVP)") adjoint = RecursiveCheckpointAdjoint( ) if adjoint == 'DTO' else BacksolveAdjoint(solver=Dopri5()) @jax.jit @jax.grad def forward_model(initial_conditions, cosmo): # Initial displacement if absolute_painting: particles = uniform_particles(mesh_shape) dx, p, _ = lpt(cosmo, initial_conditions, particles, a=lpt_scale_factor, order=order) ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape)) y0 = jnp.stack([particles + dx, p]) else: dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order) ode_fn = ODETerm( make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False)) y0 = jnp.stack([dx, p]) solver = Dopri5() controller = PIDController(rtol=1e-7, atol=1e-7, pcoeff=0.4, icoeff=1, dcoeff=0) saveat = SaveAt(t1=True) solutions = diffeqsolve(ode_fn, solver, t0=lpt_scale_factor, t1=1.0, dt0=None, y0=y0, adjoint=adjoint, stepsize_controller=controller, saveat=saveat) if absolute_painting: final_field = cic_paint(jnp.zeros(mesh_shape), solutions.ys[-1, 0]) else: final_field = cic_paint_dx(solutions.ys[-1, 0]) return MSE(final_field, nbody_from_lpt1 if order == 1 else nbody_from_lpt2) bad_initial_conditions = initial_conditions + jax.random.normal( jax.random.PRNGKey(0), initial_conditions.shape) * 0.5 best_ic = forward_model(initial_conditions, cosmo) bad_ic = forward_model(bad_initial_conditions, cosmo) assert jnp.max(best_ic) < 1e-5 assert jnp.max(bad_ic) > 1e-5