forked from Aquila-Consortium/JaxPM_highres
commit
ef7a7ef5c9
2 changed files with 163 additions and 95 deletions
|
@ -3,7 +3,8 @@ import numpy as np
|
|||
|
||||
|
||||
def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
|
||||
""" Return k_vector given a shape (nc, nc, nc) and box_size
|
||||
"""
|
||||
Return wave-vectors for a given shape
|
||||
"""
|
||||
k = []
|
||||
for d in range(len(shape)):
|
||||
|
@ -23,16 +24,18 @@ def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
|
|||
def gradient_kernel(kvec, direction, order=1):
|
||||
"""
|
||||
Computes the gradient kernel in the requested direction
|
||||
Parameters:
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
kvec: array
|
||||
Array of k values in Fourier space
|
||||
kvec: list
|
||||
List of wave-vectors in Fourier space
|
||||
direction: int
|
||||
Index of the direction in which to take the gradient
|
||||
Returns:
|
||||
|
||||
Returns
|
||||
--------
|
||||
wts: array
|
||||
Complex kernel
|
||||
Complex kernel values
|
||||
"""
|
||||
if order == 0:
|
||||
wts = 1j * kvec[direction]
|
||||
|
@ -47,40 +50,42 @@ def gradient_kernel(kvec, direction, order=1):
|
|||
return wts
|
||||
|
||||
|
||||
def laplace_kernel(kvec):
|
||||
def invlaplace_kernel(kvec):
|
||||
"""
|
||||
Compute the Laplace kernel from a given K vector
|
||||
Parameters:
|
||||
Compute the inverse Laplace kernel
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
kvec: array
|
||||
Array of k values in Fourier space
|
||||
Returns:
|
||||
kvec: list
|
||||
List of wave-vectors
|
||||
|
||||
Returns
|
||||
--------
|
||||
wts: array
|
||||
Complex kernel
|
||||
Complex kernel values
|
||||
"""
|
||||
kk = sum(ki**2 for ki in kvec)
|
||||
mask = (kk == 0).nonzero()
|
||||
kk[mask] = 1
|
||||
wts = 1. / kk
|
||||
imask = (~(kk == 0)).astype(int)
|
||||
wts *= imask
|
||||
return wts
|
||||
kk_nozeros = jnp.where(kk==0, 1, kk)
|
||||
return - jnp.where(kk==0, 0, 1 / kk_nozeros)
|
||||
|
||||
|
||||
def longrange_kernel(kvec, r_split):
|
||||
"""
|
||||
Computes a long range kernel
|
||||
Parameters:
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
kvec: array
|
||||
Array of k values in Fourier space
|
||||
kvec: list
|
||||
List of wave-vectors
|
||||
r_split: float
|
||||
TODO: @modichirag add documentation
|
||||
Returns:
|
||||
Splitting radius
|
||||
|
||||
Returns
|
||||
--------
|
||||
wts: array
|
||||
kernel
|
||||
Complex kernel values
|
||||
|
||||
TODO: @modichirag add documentation
|
||||
"""
|
||||
if r_split != 0:
|
||||
kk = sum(ki**2 for ki in kvec)
|
||||
|
@ -94,11 +99,17 @@ def cic_compensation(kvec):
|
|||
Computes cic compensation kernel.
|
||||
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
||||
Itself based on equation 18 (with p=2) of
|
||||
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
|
||||
Args:
|
||||
kvec: array of k values in Fourier space
|
||||
[Jing et al 2005](https://arxiv.org/abs/astro-ph/0409240)
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
kvec: list
|
||||
List of wave-vectors
|
||||
|
||||
Returns:
|
||||
v: array of kernel
|
||||
--------
|
||||
wts: array
|
||||
Complex kernel values
|
||||
"""
|
||||
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
||||
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
||||
|
@ -108,18 +119,20 @@ def cic_compensation(kvec):
|
|||
def PGD_kernel(kvec, kl, ks):
|
||||
"""
|
||||
Computes the PGD kernel
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
kvec: array
|
||||
Array of k values in Fourier space
|
||||
kvec: list
|
||||
List of wave-vectors
|
||||
kl: float
|
||||
initial long range scale parameter
|
||||
Initial long range scale parameter
|
||||
ks: float
|
||||
initial dhort range scale parameter
|
||||
Initial dhort range scale parameter
|
||||
|
||||
Returns:
|
||||
--------
|
||||
v: array
|
||||
kernel
|
||||
Complex kernel values
|
||||
"""
|
||||
kk = sum(ki**2 for ki in kvec)
|
||||
kl2 = kl**2
|
||||
|
|
115
jaxpm/pm.py
115
jaxpm/pm.py
|
@ -1,48 +1,80 @@
|
|||
import jax
|
||||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
from jax_cosmo import Cosmology
|
||||
|
||||
from jaxpm.growth import dGfa, growth_factor, growth_rate
|
||||
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel,
|
||||
longrange_kernel)
|
||||
from jaxpm.growth import growth_factor, growth_rate, dGfa, growth_factor_second, growth_rate_second, dGf2a
|
||||
from jaxpm.kernels import PGD_kernel, fftk, gradient_kernel, invlaplace_kernel, longrange_kernel
|
||||
from jaxpm.painting import cic_paint, cic_read
|
||||
|
||||
|
||||
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
|
||||
|
||||
def pm_forces(positions, mesh_shape, delta=None, r_split=0):
|
||||
"""
|
||||
Computes gravitational forces on particles using a PM scheme
|
||||
"""
|
||||
if mesh_shape is None:
|
||||
mesh_shape = delta.shape
|
||||
kvec = fftk(mesh_shape)
|
||||
|
||||
if delta is None:
|
||||
delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions))
|
||||
else:
|
||||
elif jnp.isrealobj(delta):
|
||||
delta_k = jnp.fft.rfftn(delta)
|
||||
else:
|
||||
delta_k = delta
|
||||
|
||||
# Computes gravitational potential
|
||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec,
|
||||
r_split=r_split)
|
||||
kvec = fftk(mesh_shape)
|
||||
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
|
||||
# Computes gravitational forces
|
||||
return jnp.stack([
|
||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k), positions)
|
||||
for i in range(3)
|
||||
],
|
||||
axis=-1)
|
||||
return jnp.stack([cic_read(jnp.fft.irfftn(- gradient_kernel(kvec, i) * pot_k), positions)
|
||||
for i in range(3)], axis=-1)
|
||||
|
||||
|
||||
def lpt(cosmo, initial_conditions, positions, a):
|
||||
def lpt(cosmo:Cosmology, init_mesh, positions, a, order=1):
|
||||
"""
|
||||
Computes first order LPT displacement
|
||||
Computes first and second order LPT displacement and momentum,
|
||||
e.g. Eq. 2 and 3 [Jenkins2010](https://arxiv.org/pdf/0910.0258)
|
||||
"""
|
||||
initial_force = pm_forces(positions, delta=initial_conditions)
|
||||
a = jnp.atleast_1d(a)
|
||||
dx = growth_factor(cosmo, a) * initial_force
|
||||
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo,
|
||||
a)) * dx
|
||||
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo,
|
||||
a) * initial_force
|
||||
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||
delta_k = jnp.fft.rfftn(init_mesh) # TODO: pass the modes directly to save one or two fft?
|
||||
mesh_shape = init_mesh.shape
|
||||
|
||||
init_force = pm_forces(positions, mesh_shape, delta=delta_k)
|
||||
dx = growth_factor(cosmo, a) * init_force
|
||||
p = a**2 * growth_rate(cosmo, a) * E * dx
|
||||
f = a**2 * E * dGfa(cosmo, a) * init_force
|
||||
|
||||
if order == 2:
|
||||
kvec = fftk(mesh_shape)
|
||||
pot_k = delta_k * invlaplace_kernel(kvec)
|
||||
|
||||
delta2 = 0
|
||||
shear_acc = 0
|
||||
# for i, ki in enumerate(kvec):
|
||||
for i in range(3):
|
||||
# Add products of diagonal terms = 0 + s11*s00 + s22*(s11+s00)...
|
||||
# shear_ii = jnp.fft.irfftn(- ki**2 * pot_k)
|
||||
nabla_i_nabla_i = gradient_kernel(kvec, i)**2
|
||||
shear_ii = jnp.fft.irfftn(nabla_i_nabla_i * pot_k)
|
||||
delta2 += shear_ii * shear_acc
|
||||
shear_acc += shear_ii
|
||||
|
||||
# for kj in kvec[i+1:]:
|
||||
for j in range(i+1, 3):
|
||||
# Substract squared strict-up-triangle terms
|
||||
# delta2 -= jnp.fft.irfftn(- ki * kj * pot_k)**2
|
||||
nabla_i_nabla_j = gradient_kernel(kvec, i) * gradient_kernel(kvec, j)
|
||||
delta2 -= jnp.fft.irfftn(nabla_i_nabla_j * pot_k)**2
|
||||
|
||||
init_force2 = pm_forces(positions, mesh_shape, delta=jnp.fft.rfftn(delta2))
|
||||
# NOTE: growth_factor_second is renormalized: - D2 = 3/7 * growth_factor_second
|
||||
dx2 = 3/7 * growth_factor_second(cosmo, a) * init_force2
|
||||
p2 = a**2 * growth_rate_second(cosmo, a) * E * dx2
|
||||
f2 = a**2 * E * dGf2a(cosmo, a) * init_force2
|
||||
|
||||
dx += dx2
|
||||
p += p2
|
||||
f += f2
|
||||
|
||||
return dx, p, f
|
||||
|
||||
|
||||
|
@ -82,10 +114,33 @@ def make_ode_fn(mesh_shape):
|
|||
|
||||
return nbody_ode
|
||||
|
||||
def get_ode_fn(cosmo:Cosmology, mesh_shape):
|
||||
|
||||
def nbody_ode(a, state, args):
|
||||
"""
|
||||
State is an array [position, velocities]
|
||||
|
||||
Compatible with [Diffrax API](https://docs.kidger.site/diffrax/)
|
||||
"""
|
||||
pos, vel = state
|
||||
forces = pm_forces(pos, mesh_shape) * 1.5 * cosmo.Omega_m
|
||||
|
||||
# Computes the update of position (drift)
|
||||
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
||||
|
||||
# Computes the update of velocity (kick)
|
||||
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
||||
|
||||
return jnp.stack([dpos, dvel])
|
||||
|
||||
return nbody_ode
|
||||
|
||||
|
||||
def pgd_correction(pos, mesh_shape, params):
|
||||
"""
|
||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
|
||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method,
|
||||
based on https://arxiv.org/abs/1804.00671
|
||||
|
||||
args:
|
||||
pos: particle positions [npart, 3]
|
||||
params: [alpha, kl, ks] pgd parameters
|
||||
|
@ -96,9 +151,9 @@ def pgd_correction(pos, mesh_shape, params):
|
|||
delta_k = jnp.fft.rfftn(delta)
|
||||
PGD_range=PGD_kernel(kvec, kl, ks)
|
||||
|
||||
pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range
|
||||
pot_k_pgd=(delta_k * invlaplace_kernel(kvec))*PGD_range
|
||||
|
||||
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos)
|
||||
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(- gradient_kernel(kvec, i)*pot_k_pgd), pos)
|
||||
for i in range(3)],axis=-1)
|
||||
|
||||
dpos_pgd = forces_pgd*alpha
|
||||
|
@ -107,7 +162,7 @@ def pgd_correction(pos, mesh_shape, params):
|
|||
|
||||
|
||||
def make_neural_ode_fn(model, mesh_shape):
|
||||
def neural_nbody_ode(state, a, cosmo, params):
|
||||
def neural_nbody_ode(state, a, cosmo:Cosmology, params):
|
||||
"""
|
||||
state is a tuple (position, velocities)
|
||||
"""
|
||||
|
@ -119,14 +174,14 @@ def make_neural_ode_fn(model, mesh_shape):
|
|||
delta_k = jnp.fft.rfftn(delta)
|
||||
|
||||
# Computes gravitational potential
|
||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=0)
|
||||
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec, r_split=0)
|
||||
|
||||
# Apply a correction filter
|
||||
kk = jnp.sqrt(sum((ki/jnp.pi)**2 for ki in kvec))
|
||||
pot_k = pot_k *(1. + model.apply(params, kk, jnp.atleast_1d(a)))
|
||||
|
||||
# Computes gravitational forces
|
||||
forces = jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), pos)
|
||||
forces = jnp.stack([cic_read(jnp.fft.irfftn(- gradient_kernel(kvec, i)*pot_k), pos)
|
||||
for i in range(3)],axis=-1)
|
||||
|
||||
forces = forces * 1.5 * cosmo.Omega_m
|
||||
|
|
Loading…
Add table
Reference in a new issue