adding neural network

This commit is contained in:
EiffL 2022-03-26 02:59:39 +01:00
parent 3e1b3d8a3b
commit 3f9dfa504a

60
jaxpm/nn.py Normal file
View file

@ -0,0 +1,60 @@
import jax
import jax.numpy as jnp
import haiku as hk
def _deBoorVectorized(x, t, c, p):
"""
Evaluates S(x).
Args
----
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
k = jnp.digitize(x, t) -1
d = [c[j + k - p] for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
alpha = (x - t[j+k-p]) / (t[j+1+k-r] - t[j+k-p])
d[j] = (1.0 - alpha) * d[j-1] + alpha * d[j]
return d[p]
class NeuralSplineFourierFilter(hk.Module):
"""A rotationally invariant filter parameterized by
a b-spline with parameters specified by a small NN."""
def __init__(self, n_knots=8, latent_size=16, name=None):
"""
n_knots: number of control points for the spline
"""
super().__init__(name=name)
self.n_knots = n_knots
self.latent_size = latent_size
def __call__(self, k, a):
"""
k: array, scale, normalized to fftfreq default
a: scalar, scale factor
"""
net = jnp.sin(hk.Linear(self.latent_size)(jnp.atleast_1d(a)))
net = jnp.sin(hk.Linear(self.latent_size)(net))
w = hk.Linear(self.n_knots+1)(net)
k = hk.Linear(self.n_knots-1)(net)
# make sure the knots sum to 1 and are in the interval 0,1
k = jnp.concatenate([jnp.zeros((1,)),
jnp.cumsum(jax.nn.softmax(k))])
w = jnp.concatenate([jnp.zeros((1,)),
w])
# Augment with repeating points
ak = jnp.concatenate([jnp.zeros((3,)), k, jnp.ones((3,))])
return _deBoorVectorized(jnp.clip(k/jnp.sqrt(3), 0, 1-1e-4), ak, w, 3)