Merge pull request #9 from DifferentiableUniverseInitiative/experimentation

Merge the Experimentation
This commit is contained in:
Francois Lanusse 2022-02-14 10:19:37 +01:00 committed by GitHub
commit 212b854915
7 changed files with 890 additions and 0 deletions

63
dev/test_script.py Normal file
View file

@ -0,0 +1,63 @@
# Start this script with:
# mpirun -np 4 python test_script.py
import os
os.environ["XLA_FLAGS"] = '--xla_force_host_platform_device_count=4'
import matplotlib.pylab as plt
import jax
import numpy as np
import jax.numpy as jnp
import jax.lax as lax
from jax.experimental.maps import mesh, xmap
from jax.experimental.pjit import PartitionSpec, pjit
import tensorflow_probability as tfp; tfp = tfp.substrates.jax
tfd = tfp.distributions
def cic_paint(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
dnums = jax.lax.ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1, 2))
mesh = lax.scatter_add(mesh,
neighboor_coords.reshape([-1,8,3]).astype('int32'),
kernel.reshape([-1,8]),
dnums)
return mesh
# And let's draw some points from some 3D distribution
dist = tfd.MultivariateNormalDiag(loc=[16.,16.,16.], scale_identity_multiplier=3.)
pos = dist.sample(1e4, seed=jax.random.PRNGKey(0))
f = pjit(lambda x: cic_paint(x, pos),
in_axis_resources=PartitionSpec('x', 'y', 'z'),
out_axis_resources=None)
devices = np.array(jax.devices()).reshape((2, 2, 1))
# Let's import the mesh
m = jnp.zeros([32, 32, 32])
with mesh(devices, ('x', 'y', 'z')):
# Shard the mesh, I'm not sure this is absolutely necessary
m = pjit(lambda x: x,
in_axis_resources=None,
out_axis_resources=PartitionSpec('x', 'y', 'z'))(m)
# Apply the sharded CiC function
res = f(m)
plt.imshow(res.sum(axis=2))
plt.show()

0
jaxpm/__init__.py Normal file
View file

608
jaxpm/growth.py Normal file
View file

@ -0,0 +1,608 @@
import jax.numpy as np
from jax_cosmo.scipy.interpolate import interp
from jax_cosmo.scipy.ode import odeint
from jax_cosmo.background import *
def E(cosmo, a):
r"""Scale factor dependent factor E(a) in the Hubble
parameter.
Parameters
----------
a : array_like
Scale factor
Returns
-------
E : ndarray, or float if input scalar
Square of the scaling of the Hubble constant as a function of
scale factor
Notes
-----
The Hubble parameter at scale factor `a` is given by
:math:`H^2(a) = E^2(a) H_o^2` where :math:`E^2` is obtained through
Friedman's Equation (see :cite:`2005:Percival`) :
.. math::
E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} a^{f(a)}
where :math:`f(a)` is the Dark Energy evolution parameter computed
by :py:meth:`.f_de`.
"""
return np.power(Esqr(cosmo, a), 0.5)
def df_de(cosmo, a, epsilon=1e-5):
r"""Derivative of the evolution parameter for the Dark Energy density
f(a) with respect to the scale factor.
Parameters
----------
cosmo: Cosmology
Cosmological parameters structure
a : array_like
Scale factor
epsilon: float value
Small number to make sure we are not dividing by 0 and avoid a singularity
Returns
-------
df(a)/da : ndarray, or float if input scalar
Derivative of the evolution parameter for the Dark Energy density
with respect to the scale factor.
Notes
-----
The expression for :math:`\frac{df(a)}{da}` is:
.. math::
\frac{df}{da}(a) = =\frac{3w_a \left( \ln(a-\epsilon)-
\frac{a-1}{a-\epsilon}\right)}{\ln^2(a-\epsilon)}
"""
return (
3
* cosmo.wa
* (np.log(a - epsilon) - (a - 1) / (a - epsilon))
/ np.power(np.log(a - epsilon), 2)
)
def dEa(cosmo, a):
r"""Derivative of the scale factor dependent factor E(a) in the Hubble
parameter.
Parameters
----------
a : array_like
Scale factor
Returns
-------
dE(a)/da : ndarray, or float if input scalar
Derivative of the scale factor dependent factor in the Hubble
parameter with respect to the scale factor.
Notes
-----
The expression for :math:`\frac{dE}{da}` is:
.. math::
\frac{dE(a)}{da}=\frac{-3a^{-4}\Omega_{0m}
-2a^{-3}\Omega_{0k}
+f'_{de}\Omega_{0de}a^{f_{de}(a)}}{2E(a)}
Notes
-----
The Hubble parameter at scale factor `a` is given by
:math:`H^2(a) = E^2(a) H_o^2` where :math:`E^2` is obtained through
Friedman's Equation (see :cite:`2005:Percival`) :
.. math::
E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} a^{f(a)}
where :math:`f(a)` is the Dark Energy evolution parameter computed
by :py:meth:`.f_de`.
"""
return (
0.5
* (
-3 * cosmo.Omega_m * np.power(a, -4)
- 2 * cosmo.Omega_k * np.power(a, -3)
+ df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))
)
/ np.power(Esqr(cosmo, a), 0.5)
)
def growth_factor(cosmo, a):
"""Compute linear growth factor D(a) at a given scale factor,
normalized such that D(a=1) = 1.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
D: ndarray, or float if input scalar
Growth factor computed at requested scale factor
Notes
-----
The growth computation will depend on the cosmology parametrization, for
instance if the $\gamma$ parameter is defined, the growth will be computed
assuming the $f = \Omega^\gamma$ growth rate, otherwise the usual ODE for
growth will be solved.
"""
if cosmo._flags["gamma_growth"]:
return _growth_factor_gamma(cosmo, a)
else:
return _growth_factor_ODE(cosmo, a)
def growth_factor_second(cosmo, a):
"""Compute second order growth factor D2(a) at a given scale factor,
normalized such that D(a=1) = 1.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
D2: ndarray, or float if input scalar
Growth factor computed at requested scale factor
Notes
-----
The growth computation will depend on the cosmology parametrization,
as for the linear growth. Currently the second order growth
factor is not implemented with $\gamma$ parameter.
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth rate is not implemented for second order growth!"
)
return None
else:
return _growth_factor_second_ODE(cosmo, a)
def growth_rate(cosmo, a):
"""Compute growth rate dD/dlna at a given scale factor.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
f: ndarray, or float if input scalar
Growth rate computed at requested scale factor
Notes
-----
The growth computation will depend on the cosmology parametrization, for
instance if the $\gamma$ parameter is defined, the growth will be computed
assuming the $f = \Omega^\gamma$ growth rate, otherwise the usual ODE for
growth will be solved.
The LCDM approximation to the growth rate :math:`f_{\gamma}(a)` is given by:
.. math::
f_{\gamma}(a) = \Omega_m^{\gamma} (a)
with :math: `\gamma` in LCDM, given approximately by:
.. math::
\gamma = 0.55
see :cite:`2019:Euclid Preparation VII, eqn.32`
"""
if cosmo._flags["gamma_growth"]:
return _growth_rate_gamma(cosmo, a)
else:
return _growth_rate_ODE(cosmo, a)
def growth_rate_second(cosmo, a):
"""Compute second order growth rate dD2/dlna at a given scale factor.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
f2: ndarray, or float if input scalar
Second order growth rate computed at requested scale factor
Notes
-----
The growth computation will depend on the cosmology parametrization,
as for the linear growth rate. Currently the second order growth
rate is not implemented with $\gamma$ parameter.
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth factor is not implemented for second order growth!"
)
return None
else:
return _growth_rate_second_ODE(cosmo, a)
def _growth_factor_ODE(cosmo, a, log10_amin=-3, steps=128, eps=1e-4):
"""Compute linear growth factor D(a) at a given scale factor,
normalised such that D(a=1) = 1.
Parameters
----------
a: array_like
Scale factor
amin: float
Mininum scale factor, default 1e-3
Returns
-------
D: ndarray, or float if input scalar
Growth factor computed at requested scale factor
"""
# Check if growth has already been computed
if not "background.growth_factor" in cosmo._workspace.keys():
# Compute tabulated array
atab = np.logspace(log10_amin, 0.0, steps)
def D_derivs(y, x):
q = (
2.0
- 0.5
* (
Omega_m_a(cosmo, x)
+ (1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x)
)
) / x
r = 1.5 * Omega_m_a(cosmo, x) / x / x
g1, g2 = y[0]
f1, f2 = y[1]
dy1da = [f1, -q * f1 + r * g1]
dy2da = [f2, -q * f2 + r * g2 - r * g1 ** 2]
return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0] ** 2], [1.0, -6.0 / 7 * atab[0]]])
y = odeint(D_derivs, y0, atab)
# compute second order derivatives growth
dyda2 = D_derivs(np.transpose(y, (1, 2, 0)), atab)
dyda2 = np.transpose(dyda2, (2, 0, 1))
# Normalize results
y1 = y[:, 0, 0]
gtab = y1 / y1[-1]
y2 = y[:, 0, 1]
g2tab = y2 / y2[-1]
# To transform from dD/da to dlnD/dlna: dlnD/dlna = a / D dD/da
ftab = y[:, 1, 0] / y1[-1] * atab / gtab
f2tab = y[:, 1, 1] / y2[-1] * atab / g2tab
# Similarly for second order derivatives
# Note: these factors are not accessible as parent functions yet
# since it is unclear what to refer to them with.
htab = dyda2[:, 1, 0] / y1[-1] * atab / gtab
h2tab = dyda2[:, 1, 1] / y2[-1] * atab / g2tab
cache = {
"a": atab,
"g": gtab,
"f": ftab,
"h": htab,
"g2": g2tab,
"f2": f2tab,
"h2": h2tab,
}
cosmo._workspace["background.growth_factor"] = cache
else:
cache = cosmo._workspace["background.growth_factor"]
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0)
def _growth_rate_ODE(cosmo, a):
"""Compute growth rate dD/dlna at a given scale factor by solving the linear
growth ODE.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
f: ndarray, or float if input scalar
Growth rate computed at requested scale factor
"""
# Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys():
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
cache = cosmo._workspace["background.growth_factor"]
return interp(a, cache["a"], cache["f"])
def _growth_factor_second_ODE(cosmo, a):
"""Compute second order growth factor D2(a) at a given scale factor,
normalised such that D(a=1) = 1.
Parameters
----------
a: array_like
Scale factor
amin: float
Mininum scale factor, default 1e-3
Returns
-------
D2: ndarray, or float if input scalar
Second order growth factor computed at requested scale factor
"""
# Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys():
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
cache = cosmo._workspace["background.growth_factor"]
return interp(a, cache["a"], cache["g2"])
def _growth_rate_ODE(cosmo, a):
"""Compute growth rate dD/dlna at a given scale factor by solving the linear
growth ODE.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
f: ndarray, or float if input scalar
Second order growth rate computed at requested scale factor
"""
# Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys():
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
cache = cosmo._workspace["background.growth_factor"]
return interp(a, cache["a"], cache["f"])
def _growth_rate_second_ODE(cosmo, a):
"""Compute second order growth rate dD2/dlna at a given scale factor by solving the linear
growth ODE.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a: array_like
Scale factor
Returns
-------
f2: ndarray, or float if input scalar
Second order growth rate computed at requested scale factor
"""
# Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys():
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
cache = cosmo._workspace["background.growth_factor"]
return interp(a, cache["a"], cache["f2"])
def _growth_factor_gamma(cosmo, a, log10_amin=-3, steps=128):
r"""Computes growth factor by integrating the growth rate provided by the
\gamma parametrization. Normalized such that D( a=1) =1
Parameters
----------
a: array_like
Scale factor
amin: float
Mininum scale factor, default 1e-3
Returns
-------
D: ndarray, or float if input scalar
Growth factor computed at requested scale factor
"""
# Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys():
# Compute tabulated array
atab = np.logspace(log10_amin, 0.0, steps)
def integrand(y, loga):
xa = np.exp(loga)
return _growth_rate_gamma(cosmo, xa)
gtab = np.exp(odeint(integrand, np.log(atab[0]), np.log(atab)))
gtab = gtab / gtab[-1] # Normalize to a=1.
cache = {"a": atab, "g": gtab}
cosmo._workspace["background.growth_factor"] = cache
else:
cache = cosmo._workspace["background.growth_factor"]
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0)
def _growth_rate_gamma(cosmo, a):
r"""Growth rate approximation at scale factor `a`.
Parameters
----------
cosmo: `Cosmology`
Cosmology object
a : array_like
Scale factor
Returns
-------
f_gamma : ndarray, or float if input scalar
Growth rate approximation at the requested scale factor
Notes
-----
The LCDM approximation to the growth rate :math:`f_{\gamma}(a)` is given by:
.. math::
f_{\gamma}(a) = \Omega_m^{\gamma} (a)
with :math: `\gamma` in LCDM, given approximately by:
.. math::
\gamma = 0.55
see :cite:`2019:Euclid Preparation VII, eqn.32`
"""
return Omega_m_a(cosmo, a) ** cosmo.gamma
def Gf(cosmo, a):
r"""
FastPM growth factor function
Parameters
----------
cosmo: dict
Cosmology dictionary.
a : array_like
Scale factor.
Returns
-------
Scalar float Tensor : FastPM growth factor function.
Notes
-----
The expression for :math:`Gf(a)` is:
.. math::
Gf(a)=D'_{1norm}*a**3*E(a)
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1*g1/ a
return D1f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
def Gf2(cosmo, a):
r""" FastPM second order growth factor function
Parameters
----------
cosmo: dict
Cosmology dictionary.
a : array_like
Scale factor.
Returns
-------
Scalar float Tensor : FastPM second order growth factor function.
Notes
-----
The expression for :math:`Gf_2(a)` is:
.. math::
Gf_2(a)=D'_{2norm}*a**3*E(a)
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2*g2/ a
return D2f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
def dGfa(cosmo, a):
r""" Derivative of Gf against a
Parameters
----------
cosmo: dict
Cosmology dictionary.
a : array_like
Scale factor.
Returns
-------
Scalar float Tensor : the derivative of Gf against a.
Notes
-----
The expression for :math:`gf(a)` is:
.. math::
gf(a)=\frac{dGF}{da}= D^{''}_1 * a ** 3 *E(a) +D'_{1norm}*a ** 3 * E'(a)
+ 3 * a ** 2 * E(a)*D'_{1norm}
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1*g1/ a
cache = cosmo._workspace['background.growth_factor']
f1p = cache['h'] / cache['a'] * cache['g']
f1p = interp(np.log(a), np.log(cache['a']), f1p)
Ea = E(cosmo, a)
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) +
3 * a**2 * Ea * D1f)
def dGf2a(cosmo, a):
r""" Derivative of Gf2 against a
Parameters
----------
cosmo: dict
Cosmology dictionary.
a : array_like
Scale factor.
Returns
-------
Scalar float Tensor : the derivative of Gf2 against a.
Notes
-----
The expression for :math:`gf2(a)` is:
.. math::
gf_2(a)=\frac{dGF_2}{da}= D^{''}_2 * a ** 3 *E(a) +D'_{2norm}*a ** 3 * E'(a)
+ 3 * a ** 2 * E(a)*D'_{2norm}
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2*g2/ a
cache = cosmo._workspace['background.growth_factor']
f2p = cache['h2'] / cache['a'] * cache['g2']
f2p = interp(np.log(a), np.log(cache['a']), f2p)
E = E(cosmo, a)
return (f2p * a**3 * E + D2f * a**3 * dEa(cosmo, a) +
3 * a**2 * E * D2f)

85
jaxpm/kernels.py Normal file
View file

@ -0,0 +1,85 @@
import numpy as np
import jax.numpy as jnp
def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
""" Return k_vector given a shape (nc, nc, nc) and box_size
"""
k = []
for d in range(len(shape)):
kd = np.fft.fftfreq(shape[d])
kd *= 2 * np.pi
kdshape = np.ones(len(shape), dtype='int')
if symmetric and d == len(shape) - 1:
kd = kd[:shape[d] // 2 + 1]
kdshape[d] = len(kd)
kd = kd.reshape(kdshape)
k.append(kd.astype(dtype))
del kd, kdshape
return k
def gradient_kernel(kvec, direction, order=1):
"""
Computes the gradient kernel in the requested direction
Parameters:
-----------
kvec: array
Array of k values in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns:
--------
wts: array
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
mask = (kk == 0).nonzero()
kk[mask] = 1
wts = 1. / kk
imask = (~(kk == 0)).astype(int)
wts *= imask
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.

51
jaxpm/painting.py Normal file
View file

@ -0,0 +1,51 @@
import jax
import jax.numpy as jnp
import jax.lax as lax
def cic_paint(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
neighboor_coords = jnp.mod(neighboor_coords.reshape([-1,8,3]).astype('int32'), jnp.array(mesh.shape))
dnums = jax.lax.ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1, 2))
mesh = lax.scatter_add(mesh,
neighboor_coords,
kernel.reshape([-1,8]),
dnums)
return mesh
def cic_read(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
neighboor_coords = jnp.mod(neighboor_coords.astype('int32'), jnp.array(mesh.shape))
return (mesh[neighboor_coords[...,0],
neighboor_coords[...,1],
neighboor_coords[...,3]]*kernel).sum(axis=-1)

72
jaxpm/pm.py Normal file
View file

@ -0,0 +1,72 @@
import jax
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
"""
Computes gravitational forces on particles using a PM scheme
"""
if mesh_shape is None:
mesh_shape = delta.shape
kvec = fftk(mesh_shape)
if delta is None:
delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions))
else:
delta_k = jnp.fft.rfftn(delta)
# Computes gravitational potential
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
# Computes gravitational forces
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions)
for i in range(3)],axis=-1)
def lpt(cosmo, initial_conditions, positions, a):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(positions, delta=initial_conditions)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
return dx, p, f
def linear_field(mesh_shape, box_size, pk, seed):
"""
Generate initial conditions.
"""
kvec = fftk(mesh_shape)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh)
field = jax.random.normal(seed, mesh_shape)
field = jnp.fft.rfftn(field) * pkmesh**0.5
field = jnp.fft.irfftn(field)
return field
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode

11
setup.py Normal file
View file

@ -0,0 +1,11 @@
from setuptools import setup, find_packages
setup(
name='JaxPM',
version='0.0.1',
url='https://github.com/DifferentiableUniverseInitiative/JaxPM',
author='JaxPM developers',
description='A dead simple FastPM implementation in JAX',
packages=find_packages(),
install_requires=['jax', 'jax_cosmo'],
)