JaxPM_highres/jaxpm/kernels.py

86 lines
1.8 KiB
Python
Raw Normal View History

2022-02-13 21:36:03 +01:00
import numpy as np
import jax.numpy as jnp
def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
""" Return k_vector given a shape (nc, nc, nc) and box_size
"""
k = []
for d in range(len(shape)):
kd = np.fft.fftfreq(shape[d])
kd *= 2 * np.pi
kdshape = np.ones(len(shape), dtype='int')
if symmetric and d == len(shape) - 1:
kd = kd[:shape[d] // 2 + 1]
kdshape[d] = len(kd)
kd = kd.reshape(kdshape)
k.append(kd.astype(dtype))
del kd, kdshape
return k
def gradient_kernel(kvec, direction, order=1):
"""
Computes the gradient kernel in the requested direction
Parameters:
-----------
kvec: array
Array of k values in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns:
--------
wts: array
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
mask = (kk == 0).nonzero()
kk[mask] = 1
wts = 1. / kk
imask = (~(kk == 0)).astype(int)
wts *= imask
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.