JaxPM_highres/jaxpm/pm.py

94 lines
3 KiB
Python
Raw Normal View History

2022-02-14 01:59:12 +01:00
import jax
import jax.numpy as jnp
import jax_cosmo as jc
2022-05-17 15:28:30 +02:00
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel
2022-02-14 01:59:12 +01:00
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
"""
Computes gravitational forces on particles using a PM scheme
"""
if mesh_shape is None:
mesh_shape = delta.shape
kvec = fftk(mesh_shape)
if delta is None:
delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions))
else:
delta_k = jnp.fft.rfftn(delta)
# Computes gravitational potential
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
# Computes gravitational forces
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions)
for i in range(3)],axis=-1)
def lpt(cosmo, initial_conditions, positions, a):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(positions, delta=initial_conditions)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
return dx, p, f
def linear_field(mesh_shape, box_size, pk, seed):
"""
Generate initial conditions.
"""
kvec = fftk(mesh_shape)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
2022-03-25 22:34:13 +01:00
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
2022-02-14 01:59:12 +01:00
field = jax.random.normal(seed, mesh_shape)
field = jnp.fft.rfftn(field) * pkmesh**0.5
field = jnp.fft.irfftn(field)
return field
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode
2022-05-17 15:28:30 +02:00
def pgd_correction(pos, cosmo, params):
"""
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method
"""
kvec = fftk(mesh_shape)
delta = cic_paint(jnp.zeros(mesh_shape), pos)
alpha, kl, ks = params
delta_k = jnp.fft.rfftn(delta)
PGD_range=PGD_kernel(kvec, kl, ks)
pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos)
for i in range(3)],axis=-1)
forces_pgd = forces_pgd * 1.5 * cosmo.Omega_m
dpos_pgd = forces_pgd*alpha
return dpos_pgd