forked from Aquila-Consortium/JaxPM_highres
153 lines
5.4 KiB
Python
153 lines
5.4 KiB
Python
|
from conftest import initialize_distributed
|
||
|
|
||
|
initialize_distributed() # ignore : E402
|
||
|
|
||
|
import jax # noqa : E402
|
||
|
import jax.numpy as jnp # noqa : E402
|
||
|
import pytest # noqa : E402
|
||
|
from diffrax import SaveAt # noqa : E402
|
||
|
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
|
||
|
from helpers import MSE # noqa : E402
|
||
|
from jax import lax # noqa : E402
|
||
|
from jax.experimental.multihost_utils import process_allgather # noqa : E402
|
||
|
from jax.sharding import NamedSharding
|
||
|
from jax.sharding import PartitionSpec as P # noqa : E402
|
||
|
|
||
|
from jaxpm.distributed import uniform_particles # noqa : E402
|
||
|
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
|
||
|
from jaxpm.pm import lpt, make_diffrax_ode # noqa : E402
|
||
|
|
||
|
_TOLERANCE = 3.0 # 🙃🙃
|
||
|
|
||
|
|
||
|
@pytest.mark.distributed
|
||
|
@pytest.mark.parametrize("order", [1, 2])
|
||
|
@pytest.mark.parametrize("absolute_painting", [True, False])
|
||
|
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||
|
absolute_painting):
|
||
|
|
||
|
mesh_shape, box_shape = simulation_config
|
||
|
# SINGLE DEVICE RUN
|
||
|
cosmo._workspace = {}
|
||
|
if absolute_painting:
|
||
|
particles = uniform_particles(mesh_shape)
|
||
|
# Initial displacement
|
||
|
dx, p, _ = lpt(cosmo,
|
||
|
initial_conditions,
|
||
|
particles,
|
||
|
a=0.1,
|
||
|
order=order)
|
||
|
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
||
|
y0 = jnp.stack([particles + dx, p])
|
||
|
else:
|
||
|
dx, p, _ = lpt(cosmo, initial_conditions, a=0.1, order=order)
|
||
|
ode_fn = ODETerm(
|
||
|
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
||
|
y0 = jnp.stack([dx, p])
|
||
|
|
||
|
solver = Dopri5()
|
||
|
controller = PIDController(rtol=1e-8,
|
||
|
atol=1e-8,
|
||
|
pcoeff=0.4,
|
||
|
icoeff=1,
|
||
|
dcoeff=0)
|
||
|
|
||
|
saveat = SaveAt(t1=True)
|
||
|
|
||
|
solutions = diffeqsolve(ode_fn,
|
||
|
solver,
|
||
|
t0=0.1,
|
||
|
t1=1.0,
|
||
|
dt0=None,
|
||
|
y0=y0,
|
||
|
stepsize_controller=controller,
|
||
|
saveat=saveat)
|
||
|
|
||
|
if absolute_painting:
|
||
|
single_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
|
||
|
solutions.ys[-1, 0])
|
||
|
else:
|
||
|
single_device_final_field = cic_paint_dx(solutions.ys[-1, 0])
|
||
|
|
||
|
print("Done with single device run")
|
||
|
# MULTI DEVICE RUN
|
||
|
|
||
|
mesh = jax.make_mesh((1, 8), ('x', 'y'))
|
||
|
sharding = NamedSharding(mesh, P('x', 'y'))
|
||
|
halo_size = mesh_shape[0] // 2
|
||
|
|
||
|
initial_conditions = lax.with_sharding_constraint(initial_conditions,
|
||
|
sharding)
|
||
|
|
||
|
print(f"sharded initial conditions {initial_conditions.sharding}")
|
||
|
|
||
|
cosmo._workspace = {}
|
||
|
if absolute_painting:
|
||
|
particles = uniform_particles(mesh_shape, sharding=sharding)
|
||
|
# Initial displacement
|
||
|
dx, p, _ = lpt(cosmo,
|
||
|
initial_conditions,
|
||
|
particles,
|
||
|
a=0.1,
|
||
|
order=order,
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding)
|
||
|
|
||
|
ode_fn = ODETerm(
|
||
|
make_diffrax_ode(cosmo,
|
||
|
mesh_shape,
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding))
|
||
|
|
||
|
y0 = jnp.stack([particles + dx, p])
|
||
|
else:
|
||
|
dx, p, _ = lpt(cosmo,
|
||
|
initial_conditions,
|
||
|
a=0.1,
|
||
|
order=order,
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding)
|
||
|
ode_fn = ODETerm(
|
||
|
make_diffrax_ode(cosmo,
|
||
|
mesh_shape,
|
||
|
paint_absolute_pos=False,
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding))
|
||
|
y0 = jnp.stack([dx, p])
|
||
|
|
||
|
solver = Dopri5()
|
||
|
controller = PIDController(rtol=1e-8,
|
||
|
atol=1e-8,
|
||
|
pcoeff=0.4,
|
||
|
icoeff=1,
|
||
|
dcoeff=0)
|
||
|
|
||
|
saveat = SaveAt(t1=True)
|
||
|
|
||
|
solutions = diffeqsolve(ode_fn,
|
||
|
solver,
|
||
|
t0=0.1,
|
||
|
t1=1.0,
|
||
|
dt0=None,
|
||
|
y0=y0,
|
||
|
stepsize_controller=controller,
|
||
|
saveat=saveat)
|
||
|
|
||
|
if absolute_painting:
|
||
|
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
|
||
|
solutions.ys[-1, 0],
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding)
|
||
|
else:
|
||
|
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
|
||
|
halo_size=halo_size,
|
||
|
sharding=sharding)
|
||
|
|
||
|
multi_device_final_field = process_allgather(multi_device_final_field,
|
||
|
tiled=True)
|
||
|
|
||
|
mse = MSE(single_device_final_field, multi_device_final_field)
|
||
|
print(f"MSE is {mse}")
|
||
|
|
||
|
assert mse < _TOLERANCE
|