sbmy_control/scripts/scola_submit.py

498 lines
No EOL
17 KiB
Python

import tqdm
import argparse
import numpy as np
import os
import subprocess
import time
def create_scola_slurm_script(slurmfile, box):
"""
Create a slurm script for sCOLA.
Parameters
----------
slurmfile : str
Path to the slurm script file.
box : str
Box number to be replaced in the slurm script.
"""
# Read the slurm file
with open(slurmfile, "r") as f:
slurm_script = f.read()
# Replace the placeholders in the slurm script
slurm_script = slurm_script.replace("BOX", box)
# Write the modified slurm script to a new file
with open(slurmfile+f".{box}", "w") as f:
f.write(slurm_script)
def submit_slurm_job(slurmfile):
"""
Submit a slurm job using the sbatch command.
Parameters
----------
slurmfile : str
Path to the slurm script file.
Returns
-------
str
Job ID of the submitted job. None if the submission failed.
"""
# Submit the job
result = subprocess.run(["sbatch", slurmfile], capture_output=True, text=True)
# Check if the submission was successful
if result.returncode != 0:
print(f"Error submitting job: {result.stderr}")
return None
# Get the job ID from the output
job_id = result.stdout.split()[-1]
return job_id
def convert_time_to_seconds(time_str):
"""
Convert a time string of the format D-HH:MM:SS or HH:MM:SS or MM:SS to seconds.
"""
time_parts = time_str.split("-")
if len(time_parts) == 2:
days = int(time_parts[0])
time_str = time_parts[1]
else:
days = 0
time_parts = time_str.split(":")
if len(time_parts) == 3:
hours, minutes, seconds = map(int, time_parts)
elif len(time_parts) == 2:
hours, minutes = map(int, time_parts)
seconds = 0
else:
raise ValueError("Invalid time format")
total_seconds = days * 86400 + hours * 3600 + minutes * 60 + seconds
return total_seconds
def convert_seconds_to_time(seconds):
"""
Convert seconds to a time string of the format D-HH:MM:SS.
"""
seconds = int(seconds)
if seconds < 0:
return "N/A"
days = seconds // 86400
seconds %= 86400
hours = seconds // 3600
seconds %= 3600
minutes = seconds // 60
seconds %= 60
if days > 0:
return f"{days}-{hours:02}:{minutes:02}:{seconds:02}"
if hours > 0:
return f"{hours:02}:{minutes:02}:{seconds:02}"
return f"{minutes:02}:{seconds:02}"
def check_job_status(job_id):
"""
Check the status of a job using the squeue command.
Returns the job status and running time.
Parameters
----------
job_id : str
Job ID of the job to check.
Returns
-------
str
Job status. Possible values are 'R' (running), 'PD' (pending), 'X' (failed), 'CP' (completed).
int
Running time in seconds. -1 if the job is not found.
"""
# Check the job status
result = subprocess.run(["squeue", "-j", str(job_id)], capture_output=True, text=True)
# Check if the job is still running
if result.returncode == 1:
return "X", -1
if len(result.stdout.split("\n")[1].split()) == 0:
return "X", -1
status = result.stdout.split("\n")[1].split()[4]
job_time = convert_time_to_seconds(result.stdout.split("\n")[1].split()[5])
return status, job_time
def get_job_id(jobname):
"""
Get the job ID from the job name using the squeue command.
"""
# Check the job status
result = subprocess.run(["squeue", "-n", jobname], capture_output=True, text=True)
# Check if the job is still running
if result.returncode == 1:
return None
if len(result.stdout.split("\n")[1].split()) == 0:
return None
# Get the job ID
job_id = result.stdout.split("\n")[1].split()[0]
return job_id
def resubmit_job(slurmdir,slurmfile,job_ids_array,box,resubmit_count,error_count,MAX_RESUBMIT=10,MAX_ERRORS=10):
"""
Resubmit a job if it has failed.
Parameters
----------
slurmdir : str
Directory where the slurm scripts are saved.
slurmfile : str
Slurm script file.
job_ids_array : array
Array of job IDs for all previously submitted jobs. Indexed by box-1 number.
box : int
Box number of the job to resubmit.
resubmit_count : int
Number of resubmissions so far.
error_count : int
Number of errors so far.
MAX_RESUBMIT : int
Maximum number of resubmissions allowed.
MAX_ERRORS : int
Maximum number of errors allowed.
Returns
-------
int
Updated resubmit count.
int
Updated error count.
"""
# Resubmit the job
job_id = submit_slurm_job(slurmdir+slurmfile+"."+str(box))
# Check if the job was submitted successfully
if job_id is None:
print(f"Error resubmitting job for box {box}")
error_count+=1
# Check if the error count exceeds the maximum
if error_count >= MAX_ERRORS:
raise RuntimeError(f"Error count exceeded {MAX_ERRORS}. Stopping job submission.")
else:
job_ids_array[box-1] = int(job_id)
resubmit_count += 1
# Check if the resubmit count exceeds the maximum
if resubmit_count >= MAX_RESUBMIT:
raise RuntimeError(f"Resubmit count exceeded {MAX_RESUBMIT}. Stopping job submission.")
return resubmit_count, error_count
def check_previous_jobs(workdir,slurmdir,slurmfile,tilefile,sleeptime,job_ids_array,box,resubmit_count,error_count,MAX_RESUBMIT=10,MAX_ERRORS=10):
"""
Get the status of all previously submitted jobs.
For each job, check if it is running, completed, or failed.
If the job is failed, resubmit it.
Parameters
----------
workdir : str
Directory where the tiles are saved.
slurmdir : str
Directory where the slurm scripts are saved.
slurmfile : str
Slurm script file.
tilefile : str
Tile file name.
sleeptime : float
Sleep time between each job submission (in s).
job_ids_array : array
Array of job IDs for all previously submitted jobs. Indexed by box-1 number.
box : int
Up to which box the job status is checked.
resubmit_count : int
Number of resubmissions so far.
error_count : int
Number of errors so far.
MAX_RESUBMIT : int
Maximum number of resubmissions allowed.
MAX_ERRORS : int
Maximum number of errors allowed.
Returns
-------
dict
Dictionary with the job status categories and their corresponding box numbers.
int
Updated resubmit count.
int
Updated error count.
"""
job_status_categories = {'R':[],'CP':[],'PD':[],'X':[]}
# Check the status of every previously submitted job
for prev_box in tqdm.tqdm(range(1,box), desc="Checking jobs", unit="boxes", leave=False, position=1):
# Check the job status
status, job_time = check_job_status(job_ids_array[prev_box-1])
# Add the job status to the dictionary
if status not in job_status_categories:
job_status_categories[status] = []
# If the status is 'X', check if the tile file was created
if status == 'X':
# Check if the tile file was created
if os.path.exists(workdir+f"{tilefile}{prev_box}.h5"):
job_status_categories['CP'].append(prev_box) # Classify as completed
else:
resubmit_job(slurmdir,slurmfile,job_ids_array,prev_box,resubmit_count,error_count,MAX_RESUBMIT,MAX_ERRORS)
job_status_categories[status].append(prev_box) # Classify as failed
# Sleep for a while before resubmitting the next job
time.sleep(sleeptime)
# If the status is not 'X', record the job status
else:
job_status_categories[status].append(prev_box)
return job_status_categories, resubmit_count, error_count
def cap_number_of_jobs(job_status_categories,job_ids_array, max_jobs, sleep_time):
"""
Cap the number of jobs to a maximum number.
Parameters
----------
job_status_categories : dict
Dictionary with the job status categories and their corresponding box numbers.
job_ids_array : array
Array of job IDs for all previously submitted jobs. Indexed by box-1 number.
max_jobs : int
Maximum number of jobs allowed.
sleep_time : float
Sleep time between each job submission (in s).
Returns
-------
dict
Updated dictionary with the job status categories and their corresponding box numbers.
"""
discard_categories = ['CP', 'X'] # Completed and Failed
# Check the number of running /pending jobs
job_num = 0
for status in job_status_categories.keys():
if status not in discard_categories:
job_num += len(job_status_categories[status])
# We wait until the number of jobs is below the maximum
while job_num > max_jobs:
print(f"Number of open jobs: {job_num} > {max_jobs}. Waiting...")
for status in job_status_categories.keys():
if status not in discard_categories:
for box in job_status_categories[status]:
# Check the new job status
new_status, job_time = check_job_status(job_ids_array[box-1])
time.sleep(sleep_time)
if new_status in discard_categories:
job_num -= 1
job_status_categories[new_status].append(box) # WARNING: We do not reclassify 'X' jobs as 'CP'
job_status_categories[status].remove(box)
return job_status_categories
def print_summary_job_status(job_status_categories, box, resubmit_count, error_count):
print("---------------------------------------------------")
# Print summary of job statuses
print(f"Job statuses after box {box}:")
# Print a table with columns for each status and below the % of jobs in that status
row0 = f"{'Status':<14}"
for status in job_status_categories.keys():
row0 += f"{status:>9} "
print(row0)
row1 = f"{'Percentage':<14}"
for status in job_status_categories.keys():
row1 += f"{len(job_status_categories[status])/box*100:>9.1f}%"
print(row1)
# Print the rate of resubmissions
print(f"Resubmission rate: {resubmit_count/box*100:.2f}%")
print(f"Error count: {error_count}")
def scola_submit(directory,
slurmdir=None,
workdir=None,
slurmfile="scola_sCOLA.sh",
tilefile="scola_tile",
jobname="sCOLA_",
N_tiles=4,
sleep=1.5,
force=False,
MAX_ERRORS=10,
MAX_RESUBMIT=10,
MAX_JOBS_AT_ONCE=48,
CHECK_EVERY=100):
if slurmdir is None:
slurmdir = directory + "slurm_scripts/"
if workdir is None:
workdir = directory + "work/"
# Check that the slurm file exists
if not os.path.exists(slurmdir+slurmfile):
raise FileNotFoundError(f"Slurm file {slurmdir+slurmfile} does not exist.")
# Check that the work directory exists
if not os.path.exists(workdir):
raise FileNotFoundError(f"Work directory {workdir} does not exist.")
# If force, remove all pre-existing tile files
if force:
count_removed = 0
for box in range(1,N_tiles**3+1):
if os.path.exists(workdir+f"{tilefile}{box}.h5"):
os.remove(workdir+f"{tilefile}{box}.h5")
count_removed += 1
print(f"Removed {count_removed} ({100*count_removed/N_tiles**3:.1f}%) pre-existing tile files.")
# MAX_ERRORS = 10
if MAX_RESUBMIT is None:
MAX_RESUBMIT = int(0.1*N_tiles**3) # 10% of the total number of jobs
# MAX_JOBS_AT_ONCE = int(3*128/8) # 3 nodes with 128 cores each, 8 jobs per core
# CHECK_EVERY = 100
error_count = 0
resubmit_count = 0
counter_for_checks = 0
job_ids_array = np.zeros((N_tiles**3,), dtype=int)
print("---------------------------------------------------")
print("Starting job submission for sCOLA tiles with the following parameters:")
print(f"Directory: {directory}")
print(f"Slurm file: {slurmdir}{slurmfile}")
print(f"Work directory: {workdir}")
print(f"Number of tiles: {N_tiles**3} tiles")
print(f"Sleep time: {sleep} s")
print(f"Max errors: {MAX_ERRORS} errors")
print(f"Max resubmits: {MAX_RESUBMIT} resubmits")
print(f"Max jobs at once: {MAX_JOBS_AT_ONCE} jobs")
print(f"Check every: {CHECK_EVERY} jobs")
print("---------------------------------------------------")
print(f"ETA: {convert_seconds_to_time(N_tiles**3*sleep*1.2)}")
print("Starting job submission...")
for box in tqdm.tqdm(range(1,N_tiles**3+1), desc="Submitting jobs", unit="boxes"):
# Check if the tile file already exists
if os.path.exists(workdir+f"{tilefile}{box}.h5"):
continue
# Check if the slurm job is already running
job_id = get_job_id(f"{jobname}{box}")
if job_id is not None:
job_ids_array[box-1] = int(job_id)
time.sleep(sleep)
continue
# Create the slurm script for the box
create_scola_slurm_script(slurmdir+slurmfile, str(box))
# Submit the job
job_id = submit_slurm_job(slurmdir+slurmfile+"."+str(box))
# Check if the job was submitted successfully
if job_id is None:
print(f"Error submitting job for box {box}")
error_count+=1
else:
job_ids_array[box-1] = int(job_id)
# Sleep for a while before submitting the next job
time.sleep(sleep)
counter_for_checks += 1
# Check if the error count exceeds the maximum
if error_count >= MAX_ERRORS:
raise RuntimeError(f"Error count exceeded {MAX_ERRORS}. Stopping job submission.")
# Check the job status every CHECK_EVERY jobs
if counter_for_checks >= CHECK_EVERY:
counter_for_checks = 0
job_status_categories, resubmit_count, error_count = check_previous_jobs(workdir,slurmdir,slurmfile,tilefile,sleep,job_ids_array,box,resubmit_count,error_count,MAX_RESUBMIT,MAX_ERRORS)
print_summary_job_status(job_status_categories, box, resubmit_count, error_count)
job_status_categories = cap_number_of_jobs(job_status_categories,job_ids_array,MAX_JOBS_AT_ONCE,sleep)
print("All jobs submitted. Now checking the status of the jobs.")
job_status_categories, resubmit_count, error_count = check_previous_jobs(workdir,slurmdir,slurmfile,tilefile,sleep,job_ids_array,N_tiles**3+1,resubmit_count,error_count,MAX_RESUBMIT,MAX_ERRORS)
# Now wait for all jobs to finish
while len(job_status_categories['CP'])<N_tiles**3:
time.sleep(10*sleep)
job_status_categories, resubmit_count, error_count = check_previous_jobs(workdir,slurmdir,slurmfile,tilefile,sleep,job_ids_array,N_tiles**3+1,resubmit_count,error_count,MAX_RESUBMIT,MAX_ERRORS)
print_summary_job_status(job_status_categories, N_tiles**3, resubmit_count, error_count)
job_status_categories = cap_number_of_jobs(job_status_categories,job_ids_array,MAX_JOBS_AT_ONCE,sleep)
print("All jobs finished.")
# Remove the slurm scripts
for box in range(1,N_tiles**3+1):
if os.path.exists(slurmdir+slurmfile+"."+str(box)):
os.remove(slurmdir+slurmfile+"."+str(box))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Submit slurm jobs for sCOLA tiles.")
parser.add_argument("-d", "--directory", type=str, default="./", help="Main directory where the output will be saved (if other dir and filenames are not specified).")
parser.add_argument("-sd", "--slurmdir", type=str, default=None, help="Directory where the slurm scripts are saved (default is -d/slurm_scripts).")
parser.add_argument("-wd", "--workdir", type=str, default=None, help="Directory where the tiles are saved (default is -d/work).")
parser.add_argument("-sf","--slurmfile", type=str, default="scola_sCOLA.sh", help="Slurm script file (located in slurmdir, default is scola_sCOLA.sh).")
parser.add_argument("-tf","--tilefile", type=str, default="scola_tile", help="Tile file name (located in workdir, default is scola_tile).")
parser.add_argument("--jobname", type=str, default="sCOLA_", help="Job name for the slurm jobs (default is sCOLA_).")
parser.add_argument("-Nt","--N_tiles", type=int, default=4, help="Number of tiles per dimension.")
parser.add_argument("--sleep", type=float, default=1.5, help="Sleep time between each job submission (in s).")
parser.add_argument("-F","--force", action="store_true", help="Force to resimulate all tiles, even if they already exist.")
args=parser.parse_args()
scola_submit(args.directory,
slurmdir=args.slurmdir,
workdir=args.workdir,
slurmfile=args.slurmfile,
tilefile=args.tilefile,
jobname=args.jobname,
N_tiles=args.N_tiles,
sleep=args.sleep,
force=args.force)