366 lines
14 KiB
Python
366 lines
14 KiB
Python
import numpy as np
|
|
|
|
kmin = 1e-1
|
|
kmax = 2e0
|
|
Nk = 50
|
|
AliasingCorr=False
|
|
|
|
def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
|
|
from pysbmy.power import PowerSpectrum
|
|
from pysbmy.fft import FourierGrid
|
|
from pysbmy.correlations import get_autocorrelation
|
|
|
|
if G is None:
|
|
G = FourierGrid(
|
|
field.L0,
|
|
field.L1,
|
|
field.L2,
|
|
field.N0,
|
|
field.N1,
|
|
field.N2,
|
|
k_modes=np.concat([PowerSpectrum(field.L0,field.L1,field.L2,field.N0,field.N1,field.N2,).FourierGrid.k_modes[:10],np.logspace(
|
|
np.log10(kmin),
|
|
np.log10(kmax),
|
|
Nk,
|
|
)]),
|
|
kmax=kmax,
|
|
)
|
|
k = G.k_modes[1:]
|
|
Pk, _ = get_autocorrelation(field, G, AliasingCorr)
|
|
Pk = Pk[1:]
|
|
|
|
return G, k, Pk
|
|
|
|
|
|
def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
|
|
from pysbmy.power import PowerSpectrum
|
|
from pysbmy.fft import FourierGrid
|
|
from pysbmy.correlations import get_crosscorrelation
|
|
|
|
|
|
if G is None:
|
|
G = FourierGrid(
|
|
field_A.L0,
|
|
field_A.L1,
|
|
field_A.L2,
|
|
field_A.N0,
|
|
field_A.N1,
|
|
field_A.N2,
|
|
k_modes=np.concat([PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,field_A.N0,field_A.N1,field_A.N2,).FourierGrid.k_modes[:10],np.logspace(
|
|
np.log10(kmin),
|
|
np.log10(kmax),
|
|
Nk,
|
|
)]),
|
|
kmax=kmax,
|
|
)
|
|
k = G.k_modes[1:]
|
|
_, _, Rks, _ = get_crosscorrelation(field_A, field_B, G, AliasingCorr)
|
|
Rks = Rks[1:]
|
|
|
|
return G, k, Rks
|
|
|
|
|
|
def add_power_spectrum_to_plot(ax, field, Pk_ref=None, G=None, plot_args={}, power_args={}):
|
|
G, k, Pk = get_power_spectrum(field, G=G, **power_args)
|
|
if Pk_ref is not None:
|
|
ax.plot(k, Pk/Pk_ref, **plot_args)
|
|
else:
|
|
ax.plot(k, Pk, **plot_args)
|
|
return ax, G, k, Pk
|
|
|
|
def add_cross_correlations_to_plot(ax, field_A, field_B, G=None, plot_args={}, power_args={}):
|
|
G, k, Rks = get_cross_correlations(field_A, field_B, G=G, **power_args)
|
|
ax.plot(k, Rks, **plot_args)
|
|
return ax, G, k, Rks
|
|
|
|
|
|
def plot_power_spectra(filenames,
|
|
labels=None,
|
|
colors=None,
|
|
linestyles=None,
|
|
markers=None,
|
|
Pk_ref=None,
|
|
G=None,
|
|
ylims=[0.9,1.1],
|
|
yticks = np.linspace(0.9,1.1,11),
|
|
bound1=0.01,
|
|
bound2=0.02,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk,
|
|
figsize=(8,4),
|
|
dpi=300,
|
|
ax=None,
|
|
fig=None,):
|
|
|
|
import matplotlib.pyplot as plt
|
|
from pysbmy.field import read_field
|
|
|
|
if fig is None or ax is None:
|
|
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
|
|
|
|
if labels is None:
|
|
labels = [None for f in filenames]
|
|
if colors is None:
|
|
colors = [None for f in filenames]
|
|
if linestyles is None:
|
|
linestyles = [None for f in filenames]
|
|
if markers is None:
|
|
markers = [None for f in filenames]
|
|
|
|
for i, filename in enumerate(filenames):
|
|
field = read_field(filename)
|
|
_, G, k, _ = add_power_spectrum_to_plot(ax=ax,
|
|
field=field,
|
|
Pk_ref=Pk_ref,
|
|
G=G,
|
|
plot_args=dict(label=labels[i],
|
|
color=colors[i],
|
|
linestyle=linestyles[i],
|
|
marker=markers[i],),
|
|
power_args=dict(kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk),
|
|
)
|
|
ax.set_xscale('log')
|
|
ax.set_xlim(k.min(),k[-2])
|
|
if ylims is not None:
|
|
ax.set_ylim(ylims)
|
|
if yticks is not None:
|
|
ax.set_yticks(yticks)
|
|
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]', labelpad=-10)
|
|
|
|
if Pk_ref is not None:
|
|
ax.set_ylabel(r'$P(k)/P_\mathrm{ref}(k)$')
|
|
else:
|
|
ax.set_ylabel('$P(k)$')
|
|
|
|
if bound1 is not None:
|
|
ax.axhspan(1 - bound1, 1 + bound1, color="grey", alpha=0.2)
|
|
if bound2 is not None:
|
|
ax.axhspan(1 - bound2, 1 + bound2, color="grey", alpha=0.1)
|
|
|
|
ax.grid(which="major",alpha=0.5)
|
|
ax.grid(which="minor",alpha=0.2)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def plot_cross_correlations(filenames_A,
|
|
filename_B,
|
|
G=None,
|
|
labels=None,
|
|
colors=None,
|
|
linestyles=None,
|
|
markers=None,
|
|
ylims=[0.99, 1.001],
|
|
yticks = np.linspace(0.99,1.001,12),
|
|
bound1=0.001,
|
|
bound2=0.002,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk,
|
|
figsize=(8,4),
|
|
dpi=300,
|
|
ax=None,
|
|
fig=None,):
|
|
|
|
import matplotlib.pyplot as plt
|
|
from pysbmy.field import read_field
|
|
|
|
if fig is None or ax is None:
|
|
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
|
|
|
|
if labels is None:
|
|
labels = [None for f in filenames_A]
|
|
if colors is None:
|
|
colors = [None for f in filenames_A]
|
|
if linestyles is None:
|
|
linestyles = [None for f in filenames_A]
|
|
if markers is None:
|
|
markers = [None for f in filenames_A]
|
|
|
|
field_B = read_field(filename_B)
|
|
|
|
for i, filename_A in enumerate(filenames_A):
|
|
field_A = read_field(filename_A)
|
|
_, G, k, _ = add_cross_correlations_to_plot(ax=ax,
|
|
field_A=field_A,
|
|
field_B=field_B,
|
|
G=G,
|
|
plot_args=dict(label=labels[i],
|
|
color=colors[i],
|
|
linestyle=linestyles[i],
|
|
marker=markers[i],),
|
|
power_args=dict(kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk),
|
|
)
|
|
ax.set_xscale('log')
|
|
ax.set_xlim(k.min(), k[-2])
|
|
if ylims is not None:
|
|
ax.set_ylim(ylims)
|
|
if yticks is not None:
|
|
ax.set_yticks(yticks)
|
|
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]', labelpad=-10)
|
|
ax.set_ylabel('$R(k)$')
|
|
|
|
if bound1 is not None:
|
|
ax.axhspan(1 - bound1, 1 + bound1, color="grey", alpha=0.2)
|
|
if bound2 is not None:
|
|
ax.axhspan(1 - bound2, 1 + bound2, color="grey", alpha=0.1)
|
|
|
|
ax.grid(which="major",alpha=0.5)
|
|
ax.grid(which="minor",alpha=0.2)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def get_ylims_and_yticks(ylims):
|
|
|
|
if ylims[0] == ylims[1]:
|
|
ylims = None
|
|
yticks = None
|
|
else:
|
|
diff_ylims = ylims[1] - ylims[0]
|
|
factor = 1
|
|
while diff_ylims<5.:
|
|
diff_ylims *= 10
|
|
factor *= 10
|
|
if diff_ylims<12.:
|
|
yticks = np.linspace(int(ylims[0]*factor)/factor,int(factor*ylims[1])/factor, int(diff_ylims)+1)
|
|
else:
|
|
while diff_ylims>12.:
|
|
diff_ylims /= 2.
|
|
factor /= 2.
|
|
yticks = np.linspace(int(ylims[0]*factor)/factor,int(factor*ylims[1])/factor, int(diff_ylims)+1)
|
|
|
|
return ylims, yticks
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from argparse import ArgumentParser
|
|
parser = ArgumentParser(description='Plot power spectra of fields')
|
|
|
|
parser.add_argument('-ps', '--power_spectrum', action='store_true', help='Plot power spectra.')
|
|
parser.add_argument('-cc', '--cross_correlation', action='store_true', help='Plot cross correlations.')
|
|
parser.add_argument('-d', '--directory', type=str, required=True, help='Directory containing the fields files.')
|
|
parser.add_argument('-ref', '--reference', type=str, default=None, help='Reference field file.')
|
|
parser.add_argument('-f', '--filenames', type=str, nargs='+', required=True, help='Field files to be plotted.')
|
|
parser.add_argument('-o', '--output', type=str, default=None, help='Output plot file name.')
|
|
parser.add_argument('-l', '--labels', type=str, nargs='+', default=None, help='Labels for each field.')
|
|
parser.add_argument('-c', '--colors', type=str, nargs='+', default=None, help='Colors for each field.')
|
|
parser.add_argument('-ls', '--linestyles', type=str, nargs='+', default=None, help='Linestyles for each field.')
|
|
parser.add_argument('-m', '--markers', type=str, nargs='+', default=None, help='Markers for each field.')
|
|
parser.add_argument('-t','--title', type=str, default=None, help='Title of the plot.')
|
|
parser.add_argument('-yrp', '--ylim_power', type=float, nargs=2, default=[0.9,1.1], help='Y-axis limits.')
|
|
parser.add_argument('-yrc', '--ylim_corr', type=float, nargs=2, default=[0.99,1.001], help='Y-axis limits.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not args.power_spectrum and not args.cross_correlation:
|
|
print('You must choose between power_spectrum and cross_correlation.')
|
|
exit()
|
|
|
|
if args.reference is not None:
|
|
from pysbmy.field import read_field
|
|
G, _, Pk_ref = get_power_spectrum(read_field(args.directory+args.reference), kmin=kmin, kmax=kmax, Nk=Nk)
|
|
else:
|
|
Pk_ref = None
|
|
G = None
|
|
|
|
|
|
filenames = [args.directory+f for f in args.filenames]
|
|
|
|
ylims_power, yticks_power = get_ylims_and_yticks(args.ylim_power)
|
|
ylims_corr, yticks_corr = get_ylims_and_yticks(args.ylim_corr)
|
|
|
|
|
|
if args.power_spectrum and args.cross_correlation:
|
|
import matplotlib.pyplot as plt
|
|
fig, axes = plt.subplots(2, 1, figsize=(8,8))
|
|
plot_power_spectra(filenames=filenames,
|
|
labels=args.labels,
|
|
colors=args.colors,
|
|
linestyles=args.linestyles,
|
|
markers=args.markers,
|
|
Pk_ref=Pk_ref,
|
|
G=G,
|
|
ylims=ylims_power,
|
|
yticks = yticks_power,
|
|
bound1=0.01,
|
|
bound2=0.02,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk,
|
|
ax=axes[0],
|
|
fig=fig)
|
|
|
|
plot_cross_correlations(filenames_A=filenames,
|
|
filename_B=args.directory+args.reference,
|
|
G=G,
|
|
labels=args.labels,
|
|
colors=args.colors,
|
|
linestyles=args.linestyles,
|
|
markers=args.markers,
|
|
ylims=ylims_corr,
|
|
yticks = yticks_corr,
|
|
bound1=0.001,
|
|
bound2=0.002,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk,
|
|
ax=axes[1],
|
|
fig=fig)
|
|
|
|
axes[1].legend(loc='lower left')
|
|
axes[0].set_title("Power Spectrum")
|
|
axes[1].set_title("Cross Correlations")
|
|
|
|
if args.title is not None:
|
|
fig.suptitle(args.title)
|
|
|
|
elif args.power_spectrum:
|
|
fig, ax = plot_power_spectra(filenames=filenames,
|
|
labels=args.labels,
|
|
colors=args.colors,
|
|
linestyles=args.linestyles,
|
|
markers=args.markers,
|
|
Pk_ref=Pk_ref,
|
|
G=G,
|
|
ylims=ylims_power,
|
|
yticks = yticks_power,
|
|
bound1=0.01,
|
|
bound2=0.02,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk)
|
|
ax.legend()
|
|
if args.title is not None:
|
|
ax.set_title(args.title)
|
|
|
|
elif args.cross_correlation:
|
|
fig, ax = plot_cross_correlations(filenames_A=filenames,
|
|
filename_B=args.reference,
|
|
G=G,
|
|
labels=args.labels,
|
|
colors=args.colors,
|
|
linestyles=args.linestyles,
|
|
markers=args.markers,
|
|
ylims=ylims_corr,
|
|
yticks = yticks_corr,
|
|
bound1=0.001,
|
|
bound2=0.002,
|
|
kmin=kmin,
|
|
kmax=kmax,
|
|
Nk=Nk)
|
|
ax.legend(loc='lower left')
|
|
if args.title is not None:
|
|
ax.set_title(args.title)
|
|
|
|
if args.output is not None:
|
|
fig.savefig(args.output)
|
|
else:
|
|
fig.savefig(args.directory+'power_spectrum.png')
|
|
|
|
|